Refine Your Search

Topic

Search Results

Standard

BODY CORROSION—A COMPREHENSIVE INTRODUCTION

1993-11-01
HISTORICAL
J1617_199311
The mechanism of automotive body corrosion is scientific, based on established laws of chemistry and physics. Yet there are many opinions related to the cause of body corrosion, not always based on scientific axioms. The purpose of this SAE Information Report is to present a basic understanding of the types of body corrosion, the factors that contribute to body corrosion, the testing procedures, evaluation of corrosion performance, and glossary of related terms.
Standard

Ball Joints

2012-10-15
CURRENT
J490_201210
This SAE Standard covers the general and dimensional data for various types of ball joints with inch threads commonly used on control linkages in automotive, marine, and construction and industrial equipment applications. Inasmuch as the load carrying and wear capabilities of ball joints vary considerably with their design and fabrication, it is suggested that the manufacturers be consulted in regard to these features and for recommendations relating to application of the different types and styles available. The inclusion of dimensional data in this standard is not intended to imply that all the products described are stock production sizes. Consumers are requested to consult with manufacturers concerning availability of stock production parts.
Standard

Ball Stud and Socket Assembly - Test Procedures

2012-10-15
CURRENT
J193_201210
The test procedures describe a method to laboratory test suspension and steering system ball stud and/or socket assemblies for functional characteristics. This procedure is an extension of SAE J491b recommended practice on dimensional recommendations for ball studs towards a vehicle application. The tests are conducted either on ball studs individually or on complete integral assemblies representing the application.
Standard

Body Corrosion - A Comprehensive Introduction

2016-04-05
CURRENT
J1617_201604
The mechanism of automotive body corrosion is scientific, based on established laws of chemistry and physics. Yet there are many opinions related to the cause of body corrosion, not always based on scientific axioms. The purpose of this SAE Information Report is to present a basic understanding of the types of body corrosion, the factors that contribute to body corrosion, the testing procedures, evaluation of corrosion performance, and glossary of related terms.
Standard

Fuel and Oil Hoses

1998-06-01
HISTORICAL
J30_199806
This SAE Standard covers fuel and oil hose, coupled and uncoupled, for use with gasoline, oil, diesel fuel, lubrication oil, or the vapor present in either the fuel system or in the crankcase of internal combustion engines in mobile, stationary, and marine applications. Sections 7 and 11 cover hose intended to meet the demands of fuel injection systems. Sections 10 and 11 cover hose intended to meet low fuel permeation requirements. Section 3 covers Coupled and Uncoupled Synthetic Rubber Tube and Cover (SAE 30R2). Section 4 covers Lightweight Braided Reinforced Lacquer, Cement, or Rubber Covered Hose (SAE 30R3). Section 5 covers Wire Inserted Synthetic Rubber Tube and Cover (SAE 30R5). Section 6 covers Low-Pressure Coupled and Uncoupled Synthetic Rubber Tube and Cover (SAE 30R6), (SAE 30R7), (SAE 30R8). Section 7 covers Fuel Injection Hose Medium-Pressure Coupled and Uncoupled Synthetic Rubber Tube and Cover (SAE 30R9).
Standard

INDUCTION CURE TEST FOR METAL BONDING ADHESIVES

1987-05-01
HISTORICAL
J1851_198705
This SAE Recommended Practice defines a procedure for determining the adhesion strength characteristics of heat-cured metal bonding adhesives subjected to induction heating.
Standard

Induction Cure Test for Metal Bonding Adhesives

2021-01-07
CURRENT
J1851_202101
This SAE Recommended Practice defines a procedure for determining the adhesion strength characteristics of heat-cured metal bonding adhesives subjected to induction heating.
Standard

LEAF SPRINGS FOR MOTOR VEHICLE SUSPENSION—MADE TO CUSTOMARY U.S. UNITS

1992-11-01
HISTORICAL
J510_199211
NOTE—For leaf springs made to metric units, see SAE J1123. This SAE Standard is limited to concise specifications promoting an adequate understanding between spring maker and spring user on all practical requirements in the finished spring. The basic concepts for the spring design and for many of the details have been fully addressed in HS-J788, SAE Information Report, Manual on Design and Application of Leaf Springs, which is available from SAE Headquarters.
Standard

LEAF SPRINGS FOR MOTOR VEHICLE SUSPENSION—MADE TO METRIC UNITS

1992-11-01
HISTORICAL
J1123_199211
NOTE—For leaf springs made to customary U.S. units, see SAE J510. This SAE Standard is limited to concise specifications promoting an adequate understanding between spring maker and spring user on all practical requirements in the finished spring. The basic concepts for the spring design and for many of the details have been fully dealt with in HS-J788.
Standard

Leaf Springs For Motor Vehicle Suspension - Made to Metric Units

2016-04-05
CURRENT
J1123_201604
NOTE—For leaf springs made to customary U.S. units, see SAE J510. This SAE Standard is limited to concise specifications promoting an adequate understanding between spring maker and spring user on all practical requirements in the finished spring. The basic concepts for the spring design and for many of the details have been fully dealt with in HS-J788.
Standard

Leaf Springs for Motor Vehicle Suspension - Made to Customary U.S. Units

2016-04-05
CURRENT
J510_201604
NOTE—For leaf springs made to metric units, see SAE J1123. This SAE Standard is limited to concise specifications promoting an adequate understanding between spring maker and spring user on all practical requirements in the finished spring. The basic concepts for the spring design and for many of the details have been fully addressed in HS-J788, SAE Information Report, Manual on Design and Application of Leaf Springs, which is available from SAE Headquarters.
Standard

METHODS OF TESTS FOR AUTOMOTIVE-TYPE SEALERS, ADHESIVES, AND DEADENERS

1971-10-01
HISTORICAL
J243_197110
This SAE Recommended Practice contains a series of test methods for use in measuring characteristics of automotive-type sealers, adhesives, and deadeners. The test methods which are contained in this document are as follows: ADS-1—Methods of Determining Viscosity ADS-2—Low Temperature Tests ADS-3—Weld-Through Tests ADS-4—Enamel, Lacquer, and Fabric Staining Test ADS-5—Wash-Off Resistance Test ADS-7—Solids Test ADS-8—Flash Point Test ADS-9—Sag and Bridging Tests ADS-10—Flow Test The intent of this document is to provide a series of test methods which can be used in testing the various qualities of sealers, adhesives, and deadener material. In later revisions of this document, attempts will be made to reduce the number of tests now presented. The specific temperatures and times at which some of these tests are to be conducted are not dictated in these test procedures, but they will be found in the material standards which govern each type of material to be tested.
Standard

Methods of Tests for Automotive-Type Sealers, Adhesives, and Deadeners

2021-01-07
CURRENT
J243_202101
This SAE Recommended Practice contains a series of test methods for use in measuring characteristics of automotive-type sealers, adhesives, and deadeners. The test methods which are contained in this document are as follows: ADS-1—Methods of Determining Viscosity ADS-2—Low Temperature Tests ADS-3—Weld-Through Tests ADS-4—Enamel, Lacquer, and Fabric Staining Test ADS-5—Wash-Off Resistance Test ADS-7—Solids Test ADS-8—Flash Point Test ADS-9—Sag and Bridging Tests ADS-10—Flow Test The intent of this document is to provide a series of test methods which can be used in testing the various qualities of sealers, adhesives, and deadener material. In later revisions of this document, attempts will be made to reduce the number of tests now presented. The specific temperatures and times at which some of these tests are to be conducted are not dictated in these test procedures, but they will be found in the material standards which govern each type of material to be tested.
Standard

PEEL STRENGTH OF SOFT TRIM ADHESIVES

1994-04-21
HISTORICAL
J1679_199404
This SAE Recommended Practice shall be used to determine the peel strength achieved by an adhesive when used to bond various decorative, flexible substrates such as cloth supported vinyl or carpet, to rigid (steel), semi-rigid (SMC plastic), or other similar substrates.
Standard

Peel Strength of Soft Trim Adhesives

2021-01-07
CURRENT
J1679_202101
This SAE Recommended Practice shall be used to determine the peel strength achieved by an adhesive when used to bond various decorative, flexible substrates such as cloth supported vinyl or carpet, to rigid (steel), semi-rigid (SMC plastic), or other similar substrates.
Standard

Performance Test Procedure - Ball Joints and Spherical Rod Ends

2012-10-15
CURRENT
J1367_201210
The purpose of this test procedure is to provide a uniform method of testing commercial spherical rod end bearings to determine their performance characteristics under specific application situations. This procedure is an extension of the dimensional requirements for spherical rod end bearings as set forth in SAE J1120 and J1259. The loads, number of cycles, definition of failure, etc., are to be agreed to by the user and supplier. This procedure can also be used as the basis for testing ball joints covered by SAE J490.
X