Refine Your Search

Topic

Affiliation

Search Results

Viewing 1 to 17 of 17
Technical Paper

A Test Method for Evaluating Material Combinations of Automotive Camshaft and Follower Components Subjected to Lubricated Sliding Simulating Variable Valve Actuation

2007-07-23
2007-01-1970
Cam phasing and Variable Valve Actuation (VVA) are used increasingly to alter the opening and closing of the valves to improve fuel economy by most of the automotive engine manufacturers. In instances where the design constraints require use of rolling and sliding follower interfaces with camshaft lobes, several solutions are possible. However, finding an inexpensive solution is challenging. This paper briefly reviews some of the conventional wear test methods that have primarily been used for piston ring cylinder liner wear assessments. Later on a new test method developed using the modified Optimol SRV 4 wear tester is described. This test method was used to assess and rank material combinations for sliding wear assessment of various camshaft lobe and follower components.
Technical Paper

An Accelerated Carburizing Process

2005-11-22
2005-01-4174
One of the most important heat treating processes is steel carburizing. However, the relatively long process times makes carburizing (and related thermochemical processes) a particularly energy consumptive and expensive process. Thus, if significant reductions in process times or temperatures can be achieved, this would result in substantial product cost savings and reduced energy consumption. Various methods of accelerating the carburizing process have been reported previously including: the use of rare earth metals, optimization by computer control of endo gas composition, use of superficial nitriding and others. In this paper, an overview of a new process using a hydrocarbon decomposition reaction catalyst that results in substantial diffusion rate acceleration and/or the potential use of significantly lower carburization temperatures will be discussed.
Technical Paper

An Investigation of Tribological Characteristics of Energy-Conserving Engine Oils Using a Reciprocating Bench Test

2000-06-19
2000-01-1781
Engine design and tribology engineers are constantly challenged to develop advanced products with reduced weight, reduced friction, longer life, and higher engine operating temperatures. The resulting engine systems must also meet more demanding emissions and fuel economy targets. Advanced energy-conserving lubricants and surface coatings are concurrently evolving to meet the needs of new engine materials. Because of the enormous cost and time associated with engine testing, much interest is being focused on the development of representative and repeatable bench tests for evaluation of engine materials and lubricants. The authors have developed a bench test employing reciprocating motion for evaluating friction and energy-conserving characteristics of lubricants.
Book

Automotive Lubricants and Testing

2012-10-31
This new book provides a comprehensive overview of various lubrication aspects of a typical powertrain system including the engine, transmission, driveline, chassis, and other components. The manual addresses major issues and current development status of automotive lubricant test methods. Topics also cover advanced lubrication and tribochemistry of the powertrain system, such as diesel fuel lubrication, specialized automotive lubricant testing development, filtration testing of automotive lubricants, lubrication of constant velocity joints, and biodegradable automotive lubricants.
Technical Paper

Determination of biodiesel oxidation stability of biodiesel B100 with optical spectroscopies of eletronic absorption UV-Visible correlation with Rancimat method DIN EN 14112

2010-10-06
2010-36-0144
Biodiesel is a biodegradable fuel that consists of alkyl esters, obtained from renewable sources, vegetal oil and animal fats reacting with a short-chain of aliphatic alcohols (typically methanol or ethanol) in the presence of a catalyst (reaction known as transesterification). An important property to use the biodiesel as fuel in diesel engines is its oxidation stability because biodiesel can contain unsaturated fatty acids, which are susceptible to oxidation, being able to change into polymerized compounds, which can cause engine problems such as blocked fuel filters. Numerous analytical methods have been applied to determine oxidation stability, European Union and Brazil use the same method DIN EN 14112 - known as Rancimat method that consists in the sample heating to 110°C where the products formed by the decomposition are blown inside by a flow of air in to measurement cell with distilled water.
Technical Paper

Engine Oil Effects on Friction and Wear Using 2.2L Direct Injection Diesel Engine Components for Bench Testing Part 2: Tribology Bench Test Results and Surface Analyses

2004-06-08
2004-01-2005
The effects of lubricating oil on friction and wear were investigated using light-duty 2.2L compression ignition direct injection (CIDI) engine components for bench testing. A matrix of test oils varying in viscosity, friction modifier level and chemistry, and base stock chemistry (mineral and synthetic) was investigated. Among all engine oils used for bench tests, the engine oil containing MoDTC friction modifier showed the lowest friction compared with the engine oils with organic friction modifier or the other engine oils without any friction modifier. Mineral-based engine oils of the same viscosity grade and oil formulation had slightly lower friction than synthetic-based engine oils.
Technical Paper

Engine Oil Effects on the Friction and Emissions of a Light-Duty, 2.2L Direct - Injection - Diesel Engine Part 1 - Engine Test Results

2002-10-21
2002-01-2681
The effects of lubricating oil on friction and engine-out emissions in a light-duty 2.2L compression ignition direct injection (CIDI) engine were investigated. A matrix of test oils varying in viscosity (SAE 5W-20 to 10W-40), friction modifier (FM) level and chemistry (MoDTC and organic FM), and basestock chemistry (mineral and synthetic) was investigated. Tests were run in an engine dynamometer according to a simulated, steady state FTP-75 procedure. Low viscosity oils and high levels of organic FM showed benefits in terms of fuel economy, but there were no significant effects observed with the oils with low MoDTC concentration on engine friction run in this program. No significant oil effects were observed on the gaseous emissions of the engine. PM emissions were analyzed for organic solubles and insolubles. The organic soluble fraction was further analyzed for the oil and fuel soluble portions.
Book

Fuels and Lubricants Handbook: Technology, Properties, Performance, and Testing

2003-06-01
This well-referenced handbook is comprehensive, in-depth, and provides a detailed overview of ALL of the important ASTM and non-ASTM fuels and lubricants test procedures. Readers will get a thorough overview of the application-related properties being tested and an extensive discussion of the principles behind the tests and their relationship to the properties themselves. A must-have for anyone in the industry involved in the formulation, use, and specification of fuels and lubricants. The information is subdivided into four sections: Petroleum Refining Processes for Fuels and Lubricant Basestocks Fuels Hydrocarbons and Synthetic Lubricants Performance/Property Testing Procedures
Technical Paper

History And Advances In Tempering Parameter Development

2006-11-21
2006-01-2807
The results of the stress relieving and tempering processes of steel are dependent on the process temperature and time which are correlated using Holloman-Jaffe equation or Larsen-Miller equation. These equations yield a value known as the tempering parameter, which is a measure of the thermal effect of the process. Processes that exhibit the same tempering parameter exhibit the same effect. In this paper an overview of the development of the tempering parameter, including its origin, use and limitations will be provided. In addition, recent work describing the development of more precise numerical relationships to describe the tempering process will be provided.
Technical Paper

Lubrication Applications of Coat Forming Additives

2005-05-11
2005-01-2181
One of the ongoing needs in the materials industry is to facilitate significant production cost saving due to energy usage. One way to do this is to use the thermal energy generally emitted during heat treatment to facilitate additive reactions with the material surface. This has been successfully done by formulating specific lubricity additives into on a oil or aqueous quenching media. When the material is heated and subsequently quenched, the lubricity additive will then react with the surface providing substantial improvements in lubricity. This process is called: “coat forming”. The objective of this paper is to provide an overview of coat forming reactions, additives, and subsequent application performance.
Technical Paper

Modeling Heat Transfer During Quenching Performance in Commercial Quench Tanks

2006-11-21
2006-01-2810
Recently, a report was issued describing the use of an alternative to the commonly used thermocouple-probe assemblies for gathering time-temperature data to simulate microstructure, hardness and residual stresses of large castings of crack-sensitive steel alloys. This process involves the measurement of the increase of the water temperature in the quenching tank as a function of time as if the quench tank were a macro-calorimeter. From this data, cooling curves may be calculated which are then used to predict microstructure and hardness. However, no details of the actual modeling process used in that work have been published to date. This paper describes the results of a laboratory study which was recently performed using a round AISI 4140 steel bar to evaluate the feasibility of using water temperature rise during a quenching to generate a cooling curve for property prediction by simulation in a manner similar to that reported earlier.
Technical Paper

Overview of Techniques for Measuring Friction Using Bench Tests and Fired Engines

2000-06-19
2000-01-1780
This paper presents an overview of techniques for measuring friction using bench tests and fired engines. The test methods discussed have been developed to provide efficient, yet realistic, assessments of new component designs, materials, and lubricants for in-cylinder and overall engine applications. A Cameron-Plint Friction and Wear Tester was modified to permit ring-in-piston-groove movement by the test specimen, and used to evaluate a number of cylinder bore coatings for friction and wear performance. In a second study, it was used to evaluate the energy conserving characteristics of several engine lubricant formulations. Results were consistent with engine and vehicle testing, and were correlated with measured fuel economy performance. The Instantaneous IMEP Method for measuring in-cylinder frictional forces was extended to higher engine speeds and to modern, low-friction engine designs.
Technical Paper

Performance Map Characterization of Lubricating Oils — Characterization of Gear Lubricants Formulated from Different Base Oils

1993-09-01
932437
One of the challenges in lubricant development is to adequately model performance across a broad range of potential lubrication and wear regimes that are encountered in use. Since wear in a given application is dependent on both rolling and sliding speeds, it is desirable to determine lubricant performance as a function of these variables. The use of a new test machine and methodology permits the construction of performance maps which define the transitions between lubrication regimes - hydrodynamic/elastohydrodynamic (EHD), EHD/mixed film and mixed film/boundary. This paper describes a method of mapping out the performance of a lubricant over a range of rolling and sliding velocities. Lubrication and wear performance is characterized for an ester base reference fluid (Herco-A) and two commercially available gear oils based on a petroleum oil and a poly(alpha olefin).
Technical Paper

Quench Factor Analysis To Quantify Steel Quench Severity And Its Successful Use In Steel Hardness Prediction

2006-11-21
2006-01-2814
Although quench factor analysis has been used by many researchers in predicting the performance of a quenchant to strengthen aluminum, it has rarely been applied to steel quenching. However, quench factor analysis posses a number of advantages over current empirical methods or more recently employed finite element thermophysical property modeling. For example, quench factor analysis can address the non-Newtonian cooling process involved with many processes utilizing vaporizable quenchants. Quench factor analysis predictions of as-quenched hardness can be successfully performed with an Excel Spreadsheet calculation. Finally, quench factors can be easily utilized in constructing databases for quenchant characterization and selection.
Technical Paper

Surface Engineered Coatings and Surface Additive Interactions for Boundary Film Formation to Reduce Frictional Losses in the Automotive Industry: A review

2005-05-11
2005-01-2180
Surface engineering encompasses numerous vital and diverse technologies in the design and wear of automotive and off-highway components. These technologies include CVD, PVD, ion implantation and conventional heat treatments such as carburizing, nitriding and carbonitriding. Although these technologies are well known, it is considerably more difficult to understand the relative importance of the various technology niches for these processes, and it is very difficult to find effective summaries of the impact of these technologies on comparative lubrication formulation and practice. The objectives of this paper are two-fold. One is to review the impact of surface engineered coatings on the surface chemistry of steel. The second objective is to review the impact of the surface chemistry obtained by different surface treatments on boundary film formation to reduce frictional losses during fluid lubrication.
Technical Paper

Surface Modification Design: Carburizing With Atmospheres

2002-03-19
2002-01-1505
Atmosphere carburizing remains one of the most important surface treatment technologies throughout the world. In this paper, various important metallurgical design variables are identified by examining the results of the carburisation of 15HN steel. These results showed the importance of the formation of martensite-retained austenite-carbide microstructure after hardening. Increasing austenization temperature causes a decrease in the carbide fraction and an increase in the fraction of retained austenite. By optimisation of the composition of these microstructures through variation of carburisation process, hardening, and tempering variables, it is possible to optimise compressive stresses, abrasive wear resistance, and contact fatigue resistance.
Technical Paper

Surface and Tribological Characterization of Coatings for Friction and Wear Reduction

1993-10-01
932787
The tribological characteristics of three different coated steel plates are compared to a bare steel plate. Coatings included a Ag/Mo coating, and two tungsten disulfide-based coatings. These materials are being considered as alternatives to bare steel and cast iron in automotive engine or powertrain components such as engine cylinders, bearings, and gears. In order to understand their tribological behavior, these coatings have been characterized in terms of surface coating properties, wear resistance, and lubricant interaction between the coating and the additive package in a test grease. Cameron-Plint test results show that the plates coated with Ag/Mo, and both tungsten disulfide-based materials all have lower friction and better wear resistance compared with the bare steel plate. Tungsten disulfide and Ag/Mo-coated plates appear to interact with grease additives. In some cases these specimens formed antiwear films.
X