Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

A 3D-CFD Methodology for Combustion Modeling in Active Prechamber SI Engines Operating with Natural Gas

2022-03-29
2022-01-0470
Active prechamber combustion systems for SI engines represent a feasible and effective solution in reducing fuel consumption and pollutant emissions for both marine and ground heavy-duty engines. However, reliable and low-cost numerical approaches need to be developed to support and speed-up their industrial design considering their geometry complexity and the involved multiple flow length scales. This work presents a CFD methodology based on the RANS approach for the simulation of active prechamber spark-ignition engines. To reduce the computational time, the gas exchange process is computed only in the prechamber region to correctly describe the flow and mixture distributions, while the whole cylinder geometry is considered only for the power-cycle (compression, combustion and expansion). Outside the prechamber the in-cylinder flow field at IVC is estimated from the measured swirl ratio.
Technical Paper

A Coupled Tabulated Kinetics and Flame Propagation Model for the Simulation of Fumigated Medium Speed Dual-Fuel Engines

2019-09-09
2019-24-0098
The present work describes the numerical modeling of medium-speed marine engines, operating in a fumigated dual-fuel mode, i.e. with the second fuel injected in the ports. This engine technology allows reducing engine-out emissions while maintaining the engine efficiency and can be fairly easily retrofitted from current diesel engines. The main premixed fuel that is added can be a low-carbon one and can additionally be of a renewable nature, thereby reducing or even completely removing the global warming impact. To fully optimize the operational parameters of such a large marine engine, computational fluid dynamics can be very helpful. Accurately describing the combustion process in such an engine is key, as the prediction of the heat release and the pollutant formation is crucial. Auto-ignition of the diesel fuel needs to be captured, followed by the combustion and flame propagation of the premixed fuel.
Journal Article

A Numerical Approach for the Analysis of Hydrotreated Vegetable Oil and Dimethoxy Methane Blends as Low-Carbon Alternative Fuel in Compression Ignition Engines

2023-04-11
2023-01-0338
Despite recent advances towards powertrain electrification as a solution to mitigate pollutant emissions from road transport, synthetic fuels (especially e- fuels) still have a major role to play in applications where electrification will not be viable in short-medium term. Among e-fuels, oxymethylene ethers are getting serious interest within the scientific community and industry. Dimethoxy methane (OME1) is the smaller molecule among this group, which is of special interest due to its low soot formation. However, its application is still limited mainly due to its low lower heating value. In contrast, other fuel alternatives like hydrogenated vegetable oil (HVO) are considered as drop-in solutions thanks to their very similar properties and molecular composition to that of fossil diesel. However, their pollutant emission improvement is limited.
Technical Paper

Advanced Turbulence Model for SI Combustion in a Heavy-Duty NG Engine

2022-03-29
2022-01-0384
In the recent years, the interest in heavy-duty engines fueled with Compressed Natural Gas (CNG) is increasing due to the necessity to comply with the stringent CO2 limitation imposed by national and international regulations. Indeed, the reduced number of carbon atoms of the NG molecule allows to reduce the CO2 emissions compared to a conventional fuel. The possibility to produce synthetic methane from renewable energy sources, or bio-methane from agricultural biomass and/or animal waste, contributes to support the switch from conventional liquid fuels to CNG. To drive the engine development and reduce the time-to-market, the employment of numerical analysis is mandatory. This requires a continuous improvement of the simulation models toward real predictive analyses able to reduce the experimental R&D efforts. In this framework, 1D numerical codes are fundamental tools for system design, energy management optimization, and so on.
Technical Paper

CFD Modeling of a DME CI Engine in Late-PCCI Operating Conditions

2023-04-11
2023-01-0203
Predictive combustion models are useful tools towards the development of clean and efficient engines operating with alternative fuels. This work intends to validate two different combustion models on compression-ignition engines fueled with Dimethyl Ether. Both approaches give a detailed characterization of the combustion kinetics, but they substantially differ in how the interaction between fluid-dynamics and chemistry is treated. The first one is single-flamelet Representative Interactive Flamelet, which considers turbulence-kinetic interaction but cannot correctly describe the stabilization of the flame. The second, named Tabulated Well Mixed, correctly accounts for local flow and mixture conditions but does not consider interaction between turbulence and chemistry. An experimental campaign was carried out on a heavy-duty truck engine running on DME at a constant load considering trade-off of EGR and SOI.
Technical Paper

Challenges and Directions of Using Ammonia as an Alternative Fuel for Internal Combustion Engines

2023-04-11
2023-01-0324
In recent decades, the importance of emerging alternative fuels has increased significantly as a solution to the problems of global warming and air pollution from energy production. In this context, ammonia (NH3) is seen as a potential option and energy vector that may be able to overcome the technical challenges associated with the use of other carbon-free fuels such as hydrogen (H2) in internal combustion engines (ICE). In this research, a numerical methodology for evaluating the impact of using ammonia as a fuel for spark-ignition ICEs has been developed. A combination of a single-cylinder and multi-cylinder numerical experiments has been performed to identify the main challenges and determine correct engine configuration. In addition, the performance of the engine has been evaluated through standard homologation driving cycles, contrasting it with other alternative propulsion configurations.
Technical Paper

Closed-Loop Combustion Control by Extremum Seeking with the Passive-Chamber Ignition Concept in SI Engines

2020-04-14
2020-01-1142
The passive pre-chamber ignition concept has shown the potential of increasing the combustion efficiency at high load by allowing more advanced combustion phasing due to its rapid combustion. The optimization of the spark advance and the dilution rate is currently a challenging task that would allow these types of engines to maintain spark ignited (SI) engines pollutants with even higher combustion efficiencies than diesel engines. This paper is focused on the automatic calibration of a SI engine, when using the passive-chamber ignition concept. The sensitivity of the combustion efficiency to spark advance and dilution rate has been studied and an extremum seeking approach has been designed to optimize the control inputs by rejecting disturbances and maintaining certain limitations of cycle-to-cycle variability and misfires.
Technical Paper

Cold Flow Simulation of a Dual-Fuel Engine for Diesel-Natural Gas and Diesel-Methanol Fuelling Conditions

2021-04-06
2021-01-0411
In this work, the possibility to perform a cold-flow simulation as a way to improve the accuracy of the starting conditions for a combustion simulation is examined. Specifically, a dual-fuel marine engine running on methanol/diesel and natural gas/diesel fueling conditions is investigated. Dual-fuel engines can provide a short-term solution to cope with the more stringent emission legislations in the maritime sector. Both natural gas and methanol appear to be interesting alternative fuels that can be used as main fuel in these dual-fuel engines. Nevertheless, it is observed that combustion problems occur at part load using these alternative fuels. Therefore, different methods to increase the combustion efficiency at part load are investigated. Numerical simulations prove to be very suitable hereto, as they are an efficient way to study the effect of different parameters on the combustion characteristics.
Technical Paper

Combustion Modeling in a Heavy-Duty Engine Operating with DME Using Detailed Kinetics and Turbulence Chemistry Interaction

2022-03-29
2022-01-0393
Dimethyl ether (DME) represents a promising fuel for heavy-duty engines thanks to its high cetane number, volatility, absence of aromatics, reduced tank-to-wheel CO2 emissions compared to Diesel fuel and the possibility to be produced from renewable energy sources. However, optimization of compression-ignition engines fueled with DME requires suitable computational tools to design dedicated injection and combustion systems: reduced injection pressures and increased nozzle diameters are expected compared to conventional Diesel engines, which influences both the air-fuel mixing and the combustion process. This work intends to evaluate the validity of two different combustion models for the prediction of performance and pollutant emissions in compression-ignition engines operating with DME. The first one is the Representative Interactive Flamelet while the second is the Approximated Diffusive Flamelet.
Technical Paper

Experimental Evaluation of Methane-Hydrogen Mixtures for Enabling Stable Lean Combustion in Spark-Ignition Engines for Automotive Applications

2022-03-29
2022-01-0471
Economy decarbonization will be one of the main goals for the following years. Research efforts are being focused on reducing carbon-based emissions, by increasing the efficiency of the transport power plants while developing new fuel production methods that reduce the environmental footprint of the refinement process. Consequently, the depletion of conventional fuels derived from petroleum with high carbon content, such as gasoline and diesel, motivated the development of propulsive alternatives for the transportation sector. In this paradigm, methane (CH4) fuel appears as a mid-term solution due to its low carbon content, if compared with traditional fuels, and the low CO2 emissions during its production from renewable sources. However, the intrinsic properties of methane compromise the combustion process, subsequently increasing the emission of CO2.
Technical Paper

Experimental and Numerical Analysis of an Active Pre-Chamber Engine Fuelled with Natural Gas

2023-04-11
2023-01-0185
Increasingly stringent pollutant and CO2 emission standards require the car manufacturers to investigate innovative solutions to further improve the fuel economy and environmental impact of their fleets. Nowadays, NOx emissions standards are stringent for spark-ignition (SI) internal combustion engines (ICEs) and many techniques are investigated to limit these emissions. Among these, an extremely lean combustion has a large potential to simultaneously reduce the NOx raw emissions and the fuel consumption of SI ICEs. Engines with pre-chamber ignition system are promising solutions for realizing a high air-fuel ratio which is both ignitable and with an adequate combustion speed. In this work, the combustion characteristics of an active pre-chamber system are experimentally investigated using a single-cylinder research engine. The engine under exam is a large bore heavy-duty unit with an active pre-chamber fuelled with compressed natural gas.
Technical Paper

Gas Exchange and Injection Modeling of an Advanced Natural Gas Engine for Heavy Duty Applications

2017-09-04
2017-24-0026
The scope of the work presented in this paper was to apply the latest open source CFD achievements to design a state of the art, direct-injection (DI), heavy-duty, natural gas-fueled engine. Within this context, an initial steady-state analysis of the in-cylinder flow was performed by simulating three different intake ducts geometries, each one with seven different valve lift values, chosen according to an estabilished methodology proposed by AVL. The discharge coefficient (Cd) and the Tumble Ratio (TR) were calculated in each case, and an optimal intake ports geometry configuration was assessed in terms of a compromise between the desired intensity of tumble in the chamber and the satisfaction of an adequate value of Cd. Subsequently, full-cycle, cold-flow simulations were performed for three different engine operating points, in order to evaluate the in-cylinder development of TR and turbulent kinetic energy (TKE) under transient conditions.
Technical Paper

Numerical Optimization of the Combustion System of a HD Compression Ignition Engine Fueled with DME Considering Current and Future Emission Standards

2018-04-03
2018-01-0247
A genetic algorithm (GA) optimization methodology is applied to the design of the combustion system of a heavy-duty (HD) Diesel engine fueled with dimethyl ether (DME). The study has two objectives, the optimization of a conventional diffusion-controlled combustion system aiming to achieve US2010 targets and the optimization of a stoichiometric combustion system coupled with a three way catalyst (TWC) to further control NOx emissions and achieve US2030 emission standards. These optimizations include the key combustion system related hardware, bowl geometry and injection nozzle design as input factors, together with the most relevant air management and injection settings. The GA was linked to the KIVA CFD code and an automated grid generation tool to perform a single-objective optimization. The target of the optimizations is to improve net indicated efficiency (NIE) while keeping NOx emissions, peak pressure and pressure rise rate under their corresponding target levels.
Technical Paper

Numerical and Experimental Analysis of Mixture Formation and Performance in a Direct Injection CNG Engine

2012-04-16
2012-01-0401
This paper presents the results of part of the research activity carried out by the Politecnico di Torino and AVL List GmbH as part of the European Community InGAS Collaborative Project. The work was aimed at developing a combustion system for a mono-fuel turbocharged CNG engine, with specific focus on performance, fuel economy and emissions. A numerical and experimental analysis of the jet development and mixture formation in an optically accessible, single cylinder engine is presented in the paper. The experimental investigations were performed at the AVL laboratories by means of the planar laser-induced fluorescence technique, and revealed a cycle-to-cycle jet shape variability that depended, amongst others, on the injector characteristics and in-cylinder backpressure. Moreover, the mixing mechanism had to be optimized over a wide range of operating conditions, under both stratified lean and homogeneous stoichiometric modes.
Technical Paper

On the Phenomenology of Hot-Spot Induced Pre-Ignition in a Direct-Injection Hydrogen-Fueled, Heavy-Duty, Optical-Engine

2023-09-29
2023-32-0169
Hydrogen-fueled internal combustion engines are highly susceptible to pre-ignition from external sources due to its low minimum ignition energy despite the hydrogen’s good auto-ignition resistance. Pre-ignition leads to uncontrolled abnormal combustion events resulting in knocking and / or backfire (flashback) which may result in mechanical damage, and as such represents tenacious obstacle to the development of hydrogen engines. Current pre-ignition mitigation strategies force sub-optimal operation thereby eroding the efficiency / emissions advantages of hydrogen fuel making the technology less attractive. Hydrogen pre-ignition phenomenon is poorly understood and knowledge gaps about the underlying mechanisms remain. To this end, a phenomenological study of hot-spot induced pre-ignition is carried out in a direct-injection hydrogen-fueled, heavy-duty, single-cylinder optical engine.
X