Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Achievement of Stable and Clean Combustion Over a Wide Operating Range in a Spark-Assisted IDI Diesel Engine with Neat Ethanol

1984-02-01
840517
Spark-assisted diesel engines operated with alcohol fuels usually display misfiring or knocking problems. This paper presents an analysis of the factors influencing the ignition characteristics of ethanol in a swirl chamber diesel engine with a multi-spark ignitor. In the experiments, cycle-to-cycle combustion variations and the degree of knocking were investigated by changing engine parameters over a wide operating range. The results of the investigations showed that stable ignition and smooth combustion is achieved when a flammable mixture is formed in the vicinity of the spark plug when only a small amount of the injected fuel has evaporated. By optimizing the design factors, operation with high efficiency and low exhaust emissions was achieved.
Technical Paper

Chemical Kinetic Analysis with Two-Zone Model on Spark Knock Suppression Effects with Hydrogen Addition at Low and High Engine Speeds

2022-01-09
2022-32-0089
Spark knock suppression with hydrogen addition was investigated at two engine speeds (2000 rpm and 4800 rpm). The experimental results showed that the spark knock is strongly suppressed with increasing hydrogen fraction at 2000 rpm while the effect is much smaller at 4800 rpm. To explain these results, chemical kinetic analyses with a two-zone combustion model were performed. The calculated results showed that the heat release in the end gas zone rises in two stages with a remarkable appearance of low temperature oxidation (LTO) at 2000 rpm, while a single stage heat release without apparent LTO process is presented at 4800 rpm due to the shorter residence time in the low temperature region.
Technical Paper

Combustion Control and Operating Range Expansion With Direct Injection of Reaction Suppressors in a Premixed DME HCCI Engine

2003-03-03
2003-01-0746
Direct injection of various ignition suppressors, including water, methanol, ethanol, 1-propanol, hydrogen, and methane, was implemented to control ignition timing and expand the operating range in an HCCI engine with induced DME as the main fuel. Ultra-low NOx and smoke-less combustion was realized over a wide operating range. The reaction suppressors reduced the rate of low-temperature oxidation and consequently delayed the onset of high-temperature oxidation. Analysis of the chemical kinetics showed a reduction of OH radical in the premixed charge with the suppressors. Among the ignition suppressors, alcohols had a greater impact on OH radical reduction resulting in stronger ignition suppression. Although water injection caused a greater lowering of the temperature, which also suppressed ignition, the strong chemical effect of radical reduction with methanol injection resulted in the larger impact on suppression of oxidation reaction rates.
Technical Paper

Combustion Control and Operating Range Expansion in an HCCI Engine with Selective Use of Fuels with Different Low-Temperature Oxidation Characteristics

2003-05-19
2003-01-1827
Light naphtha, which exhibits two-stage ignition, was induced from the intake manifold for ignition enhancement and a low ignitability fuel or water, which does not exhibit low temperature oxidation, was directly injected early in the compression stroke for ignition suppression in an HCCI engine. Their quantitative balance was flexibly controlled to optimize ignition timing according to operating condition. Ultra-low NOx and smokeless combustion without knocking or misfiring was realized over a wide operating range. Alcohols inhibit low temperature oxidation more strongly than other oxygenated or unoxygenated hydrocarbons, water, and hydrogen. Chemical kinetic modeling for methanol showed a reduction of OH radical concentration before the onset of low temperature oxidation, and this may be the main mechanism by which alcohols inhibit low temperature oxidation.
Technical Paper

Elimination of Combustion Difficulties in a Glow Plug-Assisted Diesel Engine Operated with Pure Ethanol and Water-Ethanol Mixtures

1983-02-01
830373
Forced ignition with glow plugs has great potential for the utilization of alcohol fuels in diesel engines. However, the installation of glow plugs may cause misfiring or knocking in parts of the operating range. This paper presents an analysis of the factors influencing the ignition characteristics of ethanol in a glow plug-assisted diesel engine; these factors may be classified into two categories: the factors related to the temperature history of the drop lets before contact with the glow plug, and those related to the probability of contact. By optimizing these factors, the combustion difficulties were successfully eliminated over the whole operating range, and engine performance comparable with conventional diesel operation was achieved.
Technical Paper

Heat Transfer into Ceramic Combustion Wall of Internal Combustion Engines

1987-02-01
870153
A thin film thermocouple with a high accuracy was developed by means of computer analysis, which allowed measurements of instantaneous temperatures and heat fluxes on combustion chamber walls. Conventional Al-alloy and ceramic plates were compared in terms of the heat loss at the upper surface of each piston during combustion, using a gasoline engine and a diesel engine in the series of experiments. It was found by the comparison that the ceramic plates subjected to higher temperatures had greater heat losses in both the gasoline and diesel engines contrary to the anticipation.
Technical Paper

Improvements to Premixed Diesel Combustion with Ignition Inhibitor Effects of Premixed Ethanol by Intake Port Injection

2010-04-12
2010-01-0866
Premixed diesel combustion modes including low temperature combustion and MK combustion are expected to realize smokeless and low NOx emissions. As ignition must be delayed until after the end of fuel injection to establish these combustion modes, methods for active ignition control are being actively pursued. It is reported that alcohols including methanol and ethanol strongly inhibit low temperature oxidation in HCCI combustion offering the possibility to control ignition with alcohol induction. In this research improvement of diesel combustion and emissions by ethanol intake port injection for the promotion of premixing of the in-cylinder injected diesel fuel, and by increased EGR for the reduction of combustion temperature.
Technical Paper

Influence of Carbon Dioxide on Combustion in an HCCI Engine with the Ignition-Control by Hydrogen

2006-10-16
2006-01-3248
A homogeneous-charge compression-ignition (HCCI) engine system that was fuelled with dimethyl ether (DME) and methanol-reformed gas (MRG) has been proposed in the previous research. Adjusting the proportion of DME and MRG can effectively control the ignition timing of the engine. In the system, both fuels are to be produced from methanol in onboard reformers utilizing the engine exhaust gas heat. While hydrogen contained in MRG has the main role of the ignition control, hydrogen increases with carbon dioxide in the methanol reforming. This paper investigates the influence of carbon dioxide on HCCI combustion engine with the ignition control by hydrogen. Both thermal and chemical effects of carbon dioxide are analyzed.
Technical Paper

Low Emission and Knock-Free Combustion with Rich and Lean Biform Mixture in a Dual-Fuel CI Engine with Induced LPG as the Main Fuel

2001-09-24
2001-01-3502
Smokeless and ultra low NOx combustion without knocking in a dual-fuel diesel engine with induced LPG as the main fuel was established with a uniquely developed piston cavity divided by a lip in the sidewall. A small quantity of diesel fuel was directly injected at early compression stroke into the lower part of the cavity as an ignition source for this confined area, and this suppressed explosively rapid combustion just after ignition and spark-knock like combustion at later stage. A combination of the divided cavity, EGR, and intake air throttling was effective to simultaneously eliminate knocking, and reduce THC and NOx significantly.
Journal Article

Low Temperature Premixed Diesel Combustion with Blends of Ordinary Diesel Fuel and Normal Heptane

2015-11-17
2015-32-0754
Premixed diesel combustion blending high volatility fuels into diesel fuel were investigated in a modern diesel engine. First, various fractions of normal heptane and diesel fuel were examined to determine the influence of the blending of a highly ignitable and volatile fuel into diesel fuel. The indicated thermal efficiency improves almost linearly with increasing normal heptane fraction, particularly at advanced injection timings when the fuel is not injected directly into the piston cavity. This improvement is mainly due to decreases in the other losses, ϕother which are calculated with the following equation based on the energy balance. ηu: The combustion efficiency calculated from the exhaust gas compositions ηi: The indicated thermal efficiency ϕex: The exhaust loss calculated from the enthalpy difference between intake and exhaust gas The decreases in the other losses with normal heptane blends are due to a reduction in the unburned fuel which does not reach the gas analyzer.
Technical Paper

Some Studies on Two-Ring-Pistons in Automobile Turbocharged Gasoline Engine

1984-02-01
840183
To reduce the friction loss, the size of compression height and the weight of piston in the automobile gasoline engines, two-ring-pistons instead of usually used three-ring-pistons have been developed at many manufacturers. In many designs of piston ring arrengement, up to now, the second ring has been used for oil control not for gas sealing. And the second ring loses the sealing effect at a high speed by the ring movement in the groove. Therefore, it is expected that the trouble caused by an increase of blow-by is not large. However, an increase in thermal load caused by a decrease of the piston cooling passage and also an increase of the lubricating oil consumption are considered to be crucial problems, especially in case of high output engines. With respect to these problems, some improvement are indicated on the basis of the experiments.
Technical Paper

The Effect of Knock on Heat Loss in Homogeneous Charge Compression Ignition Engines

2002-03-04
2002-01-0108
One of the problems in HCCI combustion is a knocking in higher load conditions. It governs the high load limit, and it is suggested that the knock increases heat loss[1], because it breaks the thermal boundary layer. But it is not clear how much knock affects on heat loss in the HCCI combustion in various conditions, such as ignition timing and load. The motivation of this study is to clarify the ratio of heat loss caused by knock in HCCI engines. The heat loss from zero-dimensional calculations with modified heat transfer coefficient, which is considering the effect of knock by adding a term of cylinder pressure rising rate dp/dt, agreed well with the results from the thermodynamic analysis in various conditions. And the results show that it is possible to avoid heat loss by knock by controlling the ignition timing at appropriate timing after T.D.C. and it will be possible to expand the load range if knock can be avoided.
X