Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Biomechanical Analysis of Head, Neck, and Torso Injuries to Child Surrogates Due to Sudden Torso Acceleration

1984-10-01
841656
This paper reports on the injuries to the head, neck and thorax of fifteen child surrogates, subjected to varying levels of sudden acceleration. Measured response data in the child surrogate tests and in matched tests with a three-year-old child test dummy are compared to the observed child surrogates injury levels to develop preliminary tolerance data for the child surrogate. The data are compared with already published data in the literature.
Technical Paper

A COMPARATIVE ANALYSIS OF VEHICLE-TO-VEHICLE AND VEHICLE -TO-RIGID FIXED BARRIER FRONTAL IMPACTS

2001-06-04
2001-06-0031
The relationship between designing for both rigid fixed barrier (RFB) and vehicle-to-vehicle tests is a topical area of research. Specifically, vehicle-to-vehicle compatibility has been a topic of keen interest to many researchers, and the interplay between the two aspects of design is presently addressed. In this paper, the studied vehicles for potential vehicle-to-vehicle impacts included: sport utility vehicles (SUVs), Pickups (PUs), and passenger cars. The SUV/PU-to-Car frontal impact tests were compared to those obtained from vehicle-to-rigid fixed barrier frontal impacts. Acceleration pulses at the B-pillar/rocker as well as dash and cabin intrusions were monitored and compared. Additionally, the energy distributions in SUV/PU-to-Car crash tests were compared to those of single vehicle-to-RFB tests. It was concluded from the analysis that vehicle weight and front-end stiffness were not always the overriding factors dictating performance.
Technical Paper

A Theoretical Math Model for Projecting Ais3+ Thoracic Injury for Belted Occupants in Frontal Impacts

2004-11-01
2004-22-0020
A theoretical math model was created to assess the net effect of aging populations versus evolving system designs from the standpoint of thoracic injury potential. The model was used to project the next twenty-five years of thoracic injuries in Canada. The choice of Canada was topical because rulemaking for CMVSS 208 has been proposed recently. The study was limited to properly-belted, front-outboard, adult occupants in 11-1 o'clock frontal crashes. Moreover, only AIS3+thoracic injury potential was considered. The research consisted of four steps. First, sub-models were developed and integrated. The sub-models were made for numerous real-world effects including population growth, crash involvement, fleet penetration of various systems (via system introduction, vehicle production, and vehicle attrition), and attendant injury risk estimation. Second, existing NASS data were used to estimate the number of AIS3+ chest-injured drivers in Canada in 2001.
Technical Paper

A Theoretical, Risk Assessment Procedure for In-Position Drivers Involved in Full-Engagement Frontal Impacts

2003-03-03
2003-01-1354
A theoretical, mathematical, risk assessment procedure was developed to estimate the fraction of drivers that incurred head and thoracic AIS3+ injuries in full-engagement frontal crashes. The estimates were based on numerical simulations of various real-world events, including variations of crash severity, crash speed, level of restraint, and occupant size. The procedure consisted of four steps: (1) conduct the simulations of the numerous events, (2) use biomechanical equations to transform the occupant responses into AIS3+ risks for each event, (3) weight the maximum risk for each event by its real-world event frequency, and (4) sum the weighted risks. To validate the risk assessment procedure, numerous steps were taken. First, a passenger car was identified to represent average field performance.
Technical Paper

Abdominal Impact Response to Rigid-Bar, Seatbelt, and Airbag Loading

2001-11-01
2001-22-0001
This study was conducted to resolve discrepancies and fill in gaps in the biomechanical impact response of the human abdomen to frontal impact loading. Three types of abdominal loading were studied: rigid-bar impacts, seatbelt loading, and close-proximity (out-of-position) airbag deployments. Eleven rigid-bar free-back tests were performed into the mid and upper abdomens of unembalmed instrumented human cadavers using nominal impact speeds of 6 and 9 m/s. Seven fixed-back rigid-bar tests were also conducted at 3, 6, and 9 m/s using one cadaver to examine the effects of body mass, spinal flexion, and repeated testing. Load-penetration corridors were developed and compared to those previously established by other researchers. Six seatbelt tests were conducted using three cadavers and a peak-loading rate of 3 m/s. The seatbelt loading tests were designed to maximize belt/abdomen interaction and were not necessarily representative of real-world crashes.
Technical Paper

Abdominal Injury Prediction in Lateral Impact - An Analysis of the Biofidelity of the Euro-SID Abdomen

1987-11-01
872203
European safety community has been actively involved in side impact research and has made significant contributions. One of the most recent is the development of the Euro-SID (European Side impact Dummy) which contains an abdominal injury detection element. This report details an analysis of the dummy abdomen and the cadaver tests upon which it is based. Specifically, the analysis examines the empirical basis, and final design of the Euro-SID abdomen with the following conclusions proffered: 1) The inclusion of an abdominal injury prediction element in the European Side impact Dummy is an important advancement in anthropomorphic dummy design. 2) The peak force-maximum compression criterion chosen as the predictor of injury is valid, given the results from the 8 cadaver tests upon which it is based.
Technical Paper

Age Effects on Thoracic Injury Tolerance

1996-11-01
962421
It is well known that the ability of the human body to withstand trauma is a function of its inherent strength, i.e., the strength of the bones and soft tissues. Yet, the properties of the bones and tissues change as a function of the individual's age. In this paper age effects on thoracic injury tolerances are studied by analyzing the mechanical properties of human bones and soft tissues and by examining experimental results found in the literature of thoracic impact tests to human cadavers. This work suggests that the adult age range can be divided into three age groups. Using piece-wise linear regression analyses, it has been determined that the reduction in injury tolerance from the “young” age group to the “elderly” group is approximately 20% under blunt frontal impact loading conditions and is as much as 70% under belt loading conditions.
Technical Paper

Age-Specific Injury Risk Curves for Distributed, Anterior Thoracic Loading of Various Sizes of Adults Based on Sternal Deflections

2016-11-07
2016-22-0001
Injury Risk Curves are developed from cadaver data for sternal deflections produced by anterior, distributed chest loads for a 25, 45, 55, 65 and 75 year-old Small Female, Mid-Size Male and Large Male based on the variations of bone strengths with age. These curves show that the risk of AIS ≥ 3 thoracic injury increases with the age of the person. This observation is consistent with NASS data of frontal accidents which shows that older unbelted drivers have a higher risk of AIS ≥ 3 chest injury than younger drivers.
Technical Paper

Analysis and Evaluation of the Biofidelity of the Human Body Finite Element Model in Lateral Impact Simulations According to ISO-TR9790 Procedures

2006-11-06
2006-22-0018
The biofidelity of the Ford Motor Company human body finite element (FE) model in side impact simulations was analyzed and evaluated following the procedures outlined in ISO technical report TR9790. This FE model, representing a 50th percentile adult male, was used to simulate the biomechanical impact tests described in ISO-TR9790. These laboratory tests were considered as suitable for assessing the lateral impact biofidelity of the head, neck, shoulder, thorax, abdomen, and pelvis of crash test dummies, subcomponent test devices, and math models that are used to represent a 50th percentile adult male. The simulated impact responses of the head, neck, shoulder, thorax, abdomen, and pelvis of the FE model were compared with the PMHS (Post Mortem Human Subject) data upon which the response requirements for side impact surrogates was based. An overall biofidelity rating of the human body FE model was determined using the ISO-TR9790 rating method.
Technical Paper

Assessing Submarining and Abdominal Injury Risk in the Hybrid III Family of Dummies

1989-10-01
892440
This paper details the development of an abdominal injury assessment device for loading due to belt restraint submarining in the Hybrid III family of dummies. The design concept and criteria, response criteria, choice of injury criterion, and validation are explained. Conclusions of this work are: 1) Abdominal injury assessment for belt loading due to submarining is now possible in the Hybrid III family of dummies. 2) The abdomen developed has biofidelity in its force deflection characteristics for belt loading, is capable of detecting the occurrence of submarining, and can be used to determine the probability of abdominal injury when submarining occurs. 3) Installation of the abdomen in the Hybrid III dummy does not change the dummy kinematics when submarining does not occur. 4) When submarining does occur, the dummy kinematics are very similar to baseline Hybrid III kinematics, except for torso angle.
Technical Paper

Assessing Submarining and Abdominal Injury Risk in the Hybrid III Family of Dummies: Part II - Development of the Small Female Frangible Abdomen

1990-10-01
902317
The Frangible Abdomen is a crushable Styrofoam insert for the abdominal region of the Hybrid III family of dummies, which has biofidelity, and assesses the occurrence of submarining and its risk of injury. It was first developed for the mid-sized male Hybrid III dummy. This paper describes the design of the Frangible Abdomen for the small female Hybrid III dummy, and how to use it to assess the occurrence and the risk of injury from submarining. The force-deflection properties of the mid-sized male insert were scaled to the small female dimension using equal stress/equal velocity scaling. Sled tests were run to compare the kinematic and dynamic performance of the baseline small female Hybrid III dummy with the same dummy modified to incorporate the Frangible Abdomen. The kinematic and submarining performance of the small female Hybrid III dummy was unchanged by the addition of the Frangible Abdomen. The Frangible Abdomen was easy to install and use, and had excellent repeatability.
Technical Paper

Assessment of Lap-ShouIder Belt Restraint Performance in Laboratory Testing

1989-10-01
892439
Hyge sled tests were conducted using a rear-seat sled fixture to evaluate submarining responses (the lap belt of a lap-shoulder belt restraint loads the abdominal region instead of the pelvis). Objectives of these tests included: an evaluation of methods to determine the occurrence of submarining; an investigation into the influence of restraint system parameters, test severity, and type of anthropomorphic test device on submarining response; and an exploration of the mechanics of submarining. This investigation determined that: 1. Slippage of the lap belt off the pelvis due to dynamic loading of the dummy and the resulting kinematics can cause abdominal loading to the dummy in laboratory crash testing. 2. The 5th female dummy submarined more easily than did the Hybrid ill in the test environment. 3. Motion of the pelvis was controlled using a “pelvic stop”, which reduced the submarining tendency for both the 5th female and Hybrid III dummies. 4.
Technical Paper

Biomechanical Analysis of Human Abdominal Impact Responses and Injuries through Finite Element Simulations of a Full Human Body Model

2005-11-09
2005-22-0016
Human abdominal response and injury in blunt impacts was investigated through finite element simulations of cadaver tests using a full human body model of an average-sized adult male. The model was validated at various impact speeds by comparing model responses with available experimental cadaver test data in pendulum side impacts and frontal rigid bar impacts from various sources. Results of various abdominal impact simulations are presented in this paper. Model-predicted abdominal dynamic responses such as force-time and force-deflection characteristics, and injury severities, measured by organ pressures, for the simulated impact conditions are presented. Quantitative results such as impact forces, abdominal deflections, internal organ stresses have shown that the abdomen responded differently to left and right side impacts, especially in low speed impact.
Technical Paper

Biomechanical Analysis of Knee Impact in Frontal Collisions through Finite Element Simulations with a Full Human Body Model

2008-06-17
2008-01-1887
This study applies a detailed finite element model of the human body to simulate occupant knee impacts experienced in vehicular frontal crashes. The human body model includes detailed anatomical features of the head, neck, chest, thoracic and lumbar spine, abdomen, and lower and upper extremities. The material properties used in the model for each anatomic part of the human body were obtained from test data reported in the literature. The total human body model used in the current study has been previously validated in frontal and side impacts. Several cadaver knee impact tests representing occupants in a frontal impact condition were simulated using the previously validated human body model. Model impact responses in terms of force-time and acceleration-time histories were compared with test results. In addition, stress distributions of the patella, femur, and pelvis were reported for the simulated test conditions.
Technical Paper

Biomechanical Assessment of a Rear-Seat Inflatable Seatbelt in Frontal Impacts

2011-11-07
2011-22-0008
This study evaluated the biomechanical performance of a rear-seat inflatable seatbelt system and compared it to that of a 3-point seatbelt system, which has a long history of good real-world performance. Frontal-impact sled tests were conducted with Hybrid III anthropomorphic test devices (ATDs) and with post mortem human subjects (PMHS) using both restraint systems and a generic rear-seat configuration. Results from these tests demonstrated: a) reduction in forward head excursion with the inflatable seatbelt system when compared to that of a 3-point seatbelt and; b) a reduction in ATD and PMHS peak chest deflections and the number of PMHS rib fractures with the inflatable seatbelt system and c) a reduction in PMHS cervical-spine injuries, due to the interaction of the chin with the inflated shoulder belt. These results suggest that an inflatable seatbelt system will offer additional benefits to some occupants in the rear seats.
Technical Paper

Biomechanical Considerations for Abdominal Loading by Seat Belt Pretensioners

2010-11-03
2010-22-0016
While seat belts are the most effective safety technology in vehicles today, there are continual efforts in the industry to improve their ability to reduce the risk of injury. In this paper, seat belt pretensioners and current trends towards more powerful systems were reviewed and analyzed. These more powerful systems may be, among other things, systems that develop higher belt forces, systems that remove slack from belt webbing at higher retraction speeds, or both. The analysis started with validation of the Ford Human Body Finite Element Model for use in evaluation of abdominal belt loading by pretensioners. The model was then used to show that those studies, done with lap-only belts, can be used to establish injury metrics for tests done with lap-shoulder belts. Then, previously performed PMHS studies were used to develop AIS 2+ and AIS 3+ injury risk curves for abdominal interaction with seat belts via logistic regression and reliability analysis with interval censoring.
Technical Paper

Biomechanical Considerations for Assessing Interactions of Children and Small Occupants with Inflatable Seat Belts

2013-11-11
2013-22-0004
NHTSA estimates that more than half of the lives saved (168,524) in car crashes between 1960 and 2002 were due to the use of seat belts. Nevertheless, while seat belts are vital to occupant crash protection, safety researchers continue efforts to further enhance the capability of seat belts in reducing injury and fatality risk in automotive crashes. Examples of seat belt design concepts that have been investigated by researchers include inflatable, 4-point, and reverse geometry seat belts. In 2011, Ford Motor Company introduced the first rear seat inflatable seat belts into production vehicles. A series of tests with child and small female-sized Anthropomorphic Test Devices (ATD) and small, elderly female Post Mortem Human Subjects (PMHS) was performed to evaluate interactions of prototype inflatable seat belts with the chest, upper torso, head and neck of children and small occupants, from infants to young adolescents.
Technical Paper

Biomechanical Response of the Pediatric Abdomen, Part 1: Development of an Experimental Model and Quantification of Structural Response to Dynamic Belt Loading

2006-11-06
2006-22-0001
The abdomen is the second most commonly injured region in children using adult seat belts, but engineers are limited in their efforts to design systems that mitigate these injuries since no current pediatric dummy has the capability to quantify injury risk from loading to the abdomen. This paper develops a porcine (sus scrofa domestica) model of the 6-year-old human's abdomen, and then defines the biomechanical response of this abdominal model. First, a detailed abdominal necropsy study was undertaken, which involved collecting a series of anthropometric measurements and organ masses on 25 swine, ranging in age from 14 to 429 days (4-101 kg mass). These were then compared to the corresponding human quantities to identify the best porcine representation of a 6-year-old human's abdomen. This was determined to be a pig of age 77 days, and whole-body mass of 21.4 kg.
Technical Paper

Biomechanical Response of the Pediatric Abdomen, Part 2: Injuries and Their Correlation with Engineering Parameters

2008-11-03
2008-22-0006
This paper describes the injuries generated during dynamic belt loading to a porcine model of the 6-year-old human abdomen, and correlates injury outcomes with measurable parameters. The test fixture produced transverse, dynamic belt loading on the abdomen of 47 immediately post-mortem juvenile swine at two locations (upper/lower), with penetration magnitudes ranging from 23% – 65% of the undeformed abdominal depth, with and without muscle tensing, and over a belt penetration rate range of 2.9 m/s – 7.8 m/s. All thoracoabdominal injuries were documented in detail and then coded according to the Abbreviated Injury Scale (AIS). Observed injuries ranged from AIS 1 to AIS 4. The injury distribution matched well the pattern of injuries observed in a large sample of children exposed to seatbelt loading in the field, with most of the injuries in the lower abdomen.
Technical Paper

Biomechanical and Scaling Bases for Frontal and Side Impact Injury Assessment Reference Values

2003-10-27
2003-22-0009
In 1983, General Motors Corporation (GM) petitioned the National Highway Traffic Safety Administration (NHTSA) to allow the use of the biofidelic Hybrid III midsize adult male dummy as an alternate test device for FMVSS 208 compliance testing of frontal impact, passive restraint systems. To support their petition, GM made public to the international automotive community the limit values that they imposed on the Hybrid III measurements, which were called Injury Assessment Reference Values (IARVs). During the past 20 years, these IARVs have been updated based on relevant biomechanical studies that have been published and scaled to provide IARVs for the Hybrid III and CRABI families of frontal impact dummies. Limit values have also been developed for the biofidelic side impact dummies, BioSID, EuroSID2 and SID-IIs.
X