Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Experimental Investigation of the Effects of Combined Hydrogen and Diesel Combustion on the Emissions of a HSDI Diesel Engine

2008-06-23
2008-01-1787
The effects of load, speed, exhaust gas recirculation (EGR) level and hydrogen addition level on the emissions from a diesel engine have been investigated. The experiments were performed on a 2.0 litre, 4 cylinder, direct injection engine with a high pressure common-rail injection system. Injection timing was varied between 14° BTDC and TDC and injection pressures were varied from 800 bar to 1400 bar to find a suitable base point. EGR levels were then varied from 0% to 40%. Hydrogen induction was varied between 0 and 6% vol. of the inlet charge. In the case of using hydrogen and EGR, the hydrogen replaced air. The load was varied from 0 to 5.4 bar BMEP at two engine speeds, 1500 rpm and 2500 rpm. For this investigation the carbon monoxide (CO), total unburnt hydrocarbons (THC), nitrogen oxides (NOx) and the filter smoke number (FSN) were all measured.
Technical Paper

Hydrogen Engine Insights: A Comprehensive Experimental Examination of Port Fuel Injection and Direct Injection

2024-04-09
2024-01-2611
The environmental and sustainable energy concerns in transport are being addressed through the decarbonisation path and the potential of hydrogen as a zero-carbon alternative fuel. Using hydrogen to replace fossil fuels in various internal combustion engines shows promise in enhancing efficiency and achieving carbon-neutral outcomes. This study presents an experimental investigation of hydrogen (H2) combustion and engine performance in a boosted spark ignition (SI) engine. The H2 engine incorporates both port fuel injection (PFI) and direct injection (DI) hydrogen fuel systems, capable of injecting hydrogen at pressures of up to 4000 kPa in the DI system and 1000 kPa in the PFI operations. This setup enables a direct comparison of the performance and emissions of the PFI and DI operations. The study involves varying the relative air-to-hydrogen ratio (λ) at different speeds to explore combustion and engine limits for categorising and optimising operational regions.
Technical Paper

In-cylinder Studies of Multiple Diesel Fuel Injection in a Single Cylinder Optical Engine

2005-04-11
2005-01-0915
An experimental study has been carried out on the multiple fuel injection process and its effect on the mixing and combustion in a single cylinder diesel engine with optical access. The engine is equipped with a production type cylinder head and a high pressure common rail fuel system which comprises a directly driven high pressure fuel pump and a control system capable of 8 injections per stroke. The single cylinder optical engine could be operated lubrication-free for up to 5 minutes due to the application of special coating on the piston liner and careful design of the piston and extended cylinder block. The in-cylinder spray and combustion were visualized at 10,000 fps by a high-speed colour video camera and a copper vapour laser. The high-speed video recordings and in-cylinder pressure and heat release analysis for up to four fuel injections will be presented and discussed.
Technical Paper

Study on Layered Close Loop Control of 4-Stroke Gasoline HCCI Engine Equipped with 4VVAS

2008-04-14
2008-01-0791
Homogeneous Charge Compression Ignition (HCCI) has the potential of reducing fuel consumption as well as NOx emissions. However, it is still confronted with problems in real-time control system and control strategy for the application of HCCI, which are studied in detail in this paper. A CAN-bus-based distributed HCCI control system was designed to implement a layered close loop control for HCCI gasoline engine equipped with 4VVAS. Meanwhile, a layered management strategy was developed to achieve high real-time control as well as to simplify the couplings between the inputs and the outputs. The entire control system was stratified into three layers, which are responsible for load (IMEP) management; combustion phase (CA50) control and mechanical system control respectively, each with its own specified close loop control strategy. The system is outstanding for its explicit configuration, easy actualization and robust performance.
X