Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Low NVH Range-Extender Application with a Small V-2 Engine - Based on a New Vibration Compensation System

2012-10-23
2012-32-0081
The interest in electric propulsion of vehicles has increased in recent years and is being discussed extensively by experts as well as the public. Up to now the driving range and the utilization of pure electric vehicles are still limited in comparison to conventional vehicles due to the limited capacity and the long charging times of today's batteries. This is a challenge to customer acceptance of a pure electric vehicle, even for a city car application. A Range Extender concept could achieve the desired customer acceptance, but should not impact the “electric driving” experience, and should not cause further significant increases in the manufacturing and purchasing cost. The V2 engine concept presented in this paper is particularly suited to a low cost, modular vehicle concept. Advantages regarding packaging can be realized with the use of two generators in combination with the V2 engine.
Technical Paper

A Model for On-Line Monitoring of In-Cylinder Residual Gas Fraction (RGF) and Mass Flowrate in Gasoline Engines

2006-04-03
2006-01-0656
In a gasoline engine, the unswept in-cylinder residual gas and introduction of external EGR is one of the important means of controlling engine raw NOx emissions and improving part load fuel economy via reduction of pumping losses. Since the trapped in-cylinder Residual Gas Fraction (RGF, comprised of both internal, and external) significantly affects the combustion process, on-line diagnosis and monitoring of in-cylinder RGF is very important to the understanding of the in-cylinder dilution condition. This is critical during the combustion system development testing and calibration processes. However, on-line measurement of in-cylinder RGF is difficult and requires an expensive exhaust gas analyzer, making it impractical for every application. Other existing methods, based on measured intake and exhaust pressures (steady state or dynamic traces) to calculate gas mass flowrate across the cylinder ports, provide a fast and economical solution to this problem.
Technical Paper

A Multi-Cylinder Airflow & Residual Gas Estimation Tool Applied to a Vehicle Demonstrator

2010-04-12
2010-01-0169
In a gasoline engine, the cycle-by-cycle fresh trapped charge, and corresponding unswept residual gas fraction (RGF) are critical parameters of interest for maintaining the desired air-fuel ratio (AFR). Accurate fueling is a key precursor to improved engine fuel economy, and reduced engine out emissions. Asymmetric flow paths to cylinders in certain engines can cause differences in the gas exchange process, which in turn cause imbalances in trapped fresh charge and RGF. Variable cam timing (VCT) can make the gas exchange process even more complex. Due to the reasons stated above, simplified models can result in significant estimation errors for fresh trapped charge and RGF if they are not gas dynamics-based or detailed enough to handle features such as variable valve timing, duration, or lift. In this paper, a new air flow and RGF measurement tool is introduced.
Technical Paper

A New Approach for Optimization of Mixture Formation on Gasoline DI Engines

2010-04-12
2010-01-0591
Advanced technologies such as direct injection DI, turbocharging and variable valve timing, have lead to a significant evolution of the gasoline engine with positive effects on driving pleasure, fuel consumption and emissions. Today's developments are primarily focused on the implementation of improved full load characteristics for driving performance and fuel consumption reduction with stoichiometric operation, following the downsizing approach in combination with turbocharging and high specific power. The requirements of a relatively small cylinder displacement with high specific power and a wide flexibility of DI injection specifications lead to competing development targets and additionally to a high number of degrees of freedom during optimization. In order to successfully approach an optimum solution, FEV has evolved an advanced development methodology, which is based on the combination of simulation, optical diagnostics and engine thermodynamics testing.
Technical Paper

A Robust Preignition Rating Methodology: Evaluating the Propensity to Establish Propagating Flames under Real Engine Conditions

2017-10-08
2017-01-2241
In this work, an experimental and analysis methodology was developed to evaluate the preignition propensity of fuels and engine operating conditions in an SI engine. A heated glow plug was introduced into the combustion chamber to induce early propagating flames. As the temperature of the glowplug varied, both the fraction of cycles experiencing these early flames and the phasing of this combustion in the engine cycle varied. A statistical methodology for assigning a single-value to this complex behavior was developed and found to have very good repeatability. The effects of engine operating conditions and fuels were evaluated using this methodology. While this study is not directly studying the so-called stochastic preignition or low-speed preignition problem, it studies one aspect of that problem in a very controlled manner.
Technical Paper

Alternative Fuel Property Correlations to the Honda Particulate Matter Index (PMI)

2016-10-17
2016-01-2250
The Honda Particulate Matter Index (PMI) is a very helpful tool which provides an indication of a fuel’s sooting tendency. Currently, the index is being used by various laboratories and vehicle OEMs as a metric to understand a fuels impact on automotive engine sooting, in preparation for new global emissions regulations. The calculation of the index involves generating detailed hydrocarbon analysis (hydrocarbon molecular speciation) using gas chromatography laboratory equipment and the PMI calculation requires the exact list of compounds and correct naming conventions to work properly. The analytical methodology can be cumbersome, when the gas chromatography methodology has to be adjusted for new compounds that are not in the method, or if the compounds are not matching the list for quantification. Also, the method itself is relatively expensive, and not easily transferrable between labs.
Technical Paper

Analysis of the Impact of Production Lubricant Composition and Fuel Dilution on Stochastic Pre-Ignition in Turbocharged, Direct-Injection Gasoline Engines

2019-04-02
2019-01-0256
The occurrence of abnormal combustion events leading to high peak pressures and severe knock can be considered to be one of the main challenges for modern turbocharged, direct-injected gasoline engines. These abnormal combustion events have been referred to as Stochastic Pre-Ignition (SPI) or Low-Speed Pre-Ignition (LSPI). The events are characterized by an undesired, early start of combustion of the cylinder charge which occurs before or in parallel to the intended flame kernel development from the spark plug. Early SPI events can subsequently lead to violent auto-ignitions that are often referred to as Mega- or Super-Knock. These heavy knock events lead to strong pressure oscillations which can destroy production engines within a few occurrences. SPI occurs mainly at low engine speed and high engine load, thus limiting the engine operating area that is in particular important to achieve good drivability in downsized engines.
Technical Paper

Application of 48V Mild-Hybrid Technology for Meeting GHG and Low NOx Emission Regulations for MHD Vehicles

2023-04-11
2023-01-0484
Vehicle OEM’s for MHD applications are facing significant challenges in meeting the stringent 2027 low-NOx and GHG emissions regulations. To meet such challenges, advanced engine and aftertreatment technologies along with powertrain electrification are being applied to achieve robust solutions. FEV has previously conducted model-based assessments to show the potential of 48V engine and aftertreatment technologies to simultaneously meet GHG and low NOx emission standards. This study focuses on evaluating the full potential of 48V electrification technology through addition of 48V P3 hybrid system to the previously developed 48V advanced engine and aftertreatment technology package. Previously, a model-based approach was utilized for selection and sizing of a 48V system-enabled engine and aftertreatment package for class 6-7 MHD application.
Journal Article

Biodiesel Effects on U.S. Light-Duty Tier 2 Engine and Emission Control Systems - Part 2

2009-04-20
2009-01-0281
Raising interest in Diesel powered passenger cars in the United States in combination with the government mandated policy to reduce dependency of foreign oil, leads to the desire of operating Diesel vehicles with Biodiesel fuel blends. There is only limited information related to the impact of Biodiesel fuels on the performance of advanced emission control systems. In this project the implementation of a NOx storage and a SCR emission control system and the development for optimal performance are evaluated. The main focus remains on the discussion of the differences between the fuels which is done for the development as well as useful life aged components. From emission control standpoint only marginal effects could be observed as a result of the Biodiesel operation. The NOx storage catalyst results showed lower tailpipe emissions which were attributed to the lower exhaust temperature profile during the test cycle. The SCR catalyst tailpipe results were fuel neutral.
Technical Paper

China Market Gasoline Review Using Fuel Particulate Emission Correlation Indices

2017-10-08
2017-01-2401
The impact of gasoline composition on vehicle particulate emissions response has been widely investigated and documented. Correlation equations between fuel composition and particulate emissions have also been documented, e.g. Particulate Matter Index (PMI) and Particulate Evaluation Index (PEI). Vehicle PM/PN emissions correlate very well with these indices. In a previous paper, global assessment with PEI on fuel sooting tendency was presented [1]. This paper will continue the previous theme by the authors, and cover China gasoline in more detail. With air pollution an increasing concern, along with more stringent emission requirements in China, both OEMs and oil industries are facing new challenges. Emissions controls require a systematic approach on both fuels and vehicles. Chinese production vehicle particulate emissions for a range of PEI fuels are also presented.
Technical Paper

Combined Particulate Matter and NOx Aftertreatment Systems for Stringent Emission Standards

2007-04-16
2007-01-1128
The HSDI Diesel engine contributes substantially to the decrease of fleet fuel consumption thus to the reduction of CO2 emissions. This results in the rising market acceptance which is supported by desirable driving performance as well as greatly improved NVH behavior. In addition to the above mentioned requirements on driving performance, fuel economy and NVH behavior, continuously increasing demands on emissions performance have to be met. From today's view the Diesel particulate trap presents a safe technology to achieve the required reduction of the particle emission of more than 95%. However, according to today's knowledge a further, substantial NOx engine-out emission reduction for the Diesel engine is counteracts with the other goal of reduced fuel consumption. To comply with current and future emission standards, Diesel engines will require DeNOx technologies.
Technical Paper

Destruction of Nitric Oxide via Selective NOx Recirculation During Lean Combustion: A Comparison of Various Engines and Fuels

2006-10-16
2006-01-3369
A series of experiments were performed using a Yanmar TS180, single cylinder, indirect injection (IDI) diesel engine, a natural gas fueled, Olympian G25F1S, spark-ignited, 25 kilowatt generator, and a two-stroke, multi-fuel, spark ignited engine to provide a diverse research platform for the study of in-cylinder NOx destruction (Conversion of NO). For each type of engine, the NOx recirculation step of the selective NOx recirculation (SNR) cycle was simulated by injecting pure nitric oxide (NO) into the intake air at various concentrations, depending on engine type and operating conditions. Previous researchers have attempted to characterize NOx destruction behavior by simulating the NOx recirculation step in both diesel and gasoline engines. Some prior work has suggested that NOx destruction behavior in diesel engines is not dependent on the amount of NO present in the intake air, and that the NOx destruction efficiency was greatly enhanced by increasing engine load.
Technical Paper

Desulfurization Effects on a Light-Duty Diesel Vehicle NOx Adsorber Exhaust Emission Control System

2006-04-03
2006-01-0423
The U.S. Tier 2 emission regulations require sophisticated exhaust aftertreatment technologies for diesel engines. One of the projects under the U.S. Department of Energy's (DOE's) Advanced Petroleum Based Fuels - Diesel Emission Controls (APBF-DEC) activity focused on the development of a light-duty passenger car with an integrated NOx (oxides of nitrogen) adsorber catalyst (NAC) and diesel particle filter (DPF) technology. Vehicle emissions tests on this platform showed the great potential of the system, achieving the Tier 2 Bin 5 emission standards with new, but degreened emission control systems. The platform development and control strategies for this project were presented in 2004-01-0581 [1]. The main disadvantage of the NOx adsorber technology is its susceptibility to sulfur poisoning. The fuel- and lubrication oil-borne sulfur is converted into sulfur dioxide (SO2) in the combustion process and is adsorbed by the active sites of the NAC.
Journal Article

Detailed Analyses and Correlation of Fuel Effects on Stochastic Preignition

2020-04-14
2020-01-0612
Stochastic or Low-Speed Preignition (SPI or LSPI) is an undesirable abnormal combustion phenomenon encountered in spark-ignition engines. It is characterized by very early heat release and high cylinder pressure and can cause knock, noise and ultimately engine damage. Much of the focus on mitigating SPI has been directed towards the engine oil formulation, leading to the emergence of the Sequence IX test and second-generation GM dexos® oil requirements. Engine design, calibration and fuels also contribute to the prevalence of SPI. As part of a recently completed research consortium, a series of engine tests were completed to determine the impact of fuel composition on SPI frequency. The fuel blends had varying levels of paraffins, olefins, aromatics and ethanol.
Technical Paper

Developing Drivetrain Robustness for Small Engine Testing

2013-04-08
2013-01-0400
The increased demand in fuel economy and the reduction of CO₂ emissions results in continued efforts to downsize engines. The downsizing efforts result in engines with lower displacement as well as lower number of cylinders. In addition to cylinder and displacement downsizing the development community embarks on continued efforts toward down-speeding. The combination of the aforementioned factors results in engines which can have high levels of torsional vibrations. Such behavior can have detrimental effects on the drivetrain particularly during the development phase of these. Driveshafts, couplings, and dynamometers are exposed to these torsional forces and depending on their frequency costly damages in these components can occur. To account for these effects, FEV employs a multi-body-system modeling approach through which base engine information is used to determine optimized drivetrain setups. All mechanical elements in the setup are analyzed based on their torsional behavior.
Technical Paper

Development of a Desulfurization Strategy for a NOx Adsorber Catalyst System

2001-03-05
2001-01-0510
The aggressive reduction of future diesel engine NOx emission limits forces the heavy- and light-duty diesel engine manufacturers to develop means to comply with stringent legislation. As a result, different exhaust emission control technologies applicable to NOx have been the subject of many investigations. One of these systems is the NOx adsorber catalyst, which has shown high NOx conversion rates during previous investigations with acceptable fuel consumption penalties. In addition, the NOx adsorber catalyst does not require a secondary on-board reductant. However, the NOx adsorber catalyst also represents the most sulfur sensitive emissions control device currently under investigation for advanced NOx control. To remove the sulfur introduced into the system through the diesel fuel and stored on the catalyst sites during operation, specific regeneration strategies and boundary conditions were investigated and developed.
Technical Paper

Development of a Dimethyl Ether (DME)-Fueled Shuttle Bus

2003-03-03
2003-01-0756
Dimethyl Ether (DME) is a potential ultra-clean diesel fuel. Its unique characteristics require special handling and accommodation of its low viscosity and low lubricity. In this project, DME was blended with diesel fuel to provide sufficient viscosity and lubricity to permit operation of a 7.3 liter turbodiesel engine in a campus shuttle bus with minimal modification of the fuel injection system. A pressurized fuel delivery system was added to the existing common rail injection system on the engine, allowing the DME-diesel fuel blend to be circulated through the rail at pressures above 200 psig keeping the DME in the liquid state. Fuel exiting the rail is cooled by finned tubed heat exchangers and recirculated to the rail using a gear pump. A modified LPG tank (for use on recreational vehicles) stores the DME- diesel fuel blend onboard the shuttle bus.
Technical Paper

Development of an Alternative Predictive Model for Gasoline Vehicle Particulate Matter and Particulate Number

2019-04-02
2019-01-1184
The Particulate Matter Index (PMI) is a helpful tool which provides an indication of a fuel’s sooting tendency. Currently, the index is being used by various laboratories and OEMs as a metric to understand the gasoline fuels impact on both sooting found on engine hardware and vehicle out emissions. This paper will explore a new method that could be used to give indication of the sooting tendency of the gasoline range fuels, called the Particulate Evaluation Index (PEI), and provide the detailed equation in its initial form. In addition, the PEI will be shown to have a good correlation agreement to PMI. The paper will then give a detailed explanation of the data used to develop it. Initial vehicle PM/PN data will also be presented that shows correlations of the indices to the vehicle response.
Technical Paper

Development of an Emission Controls Concept for an IDI Heavy-Duty Diesel Engine Meeting 2007 Phase-In Emission Standards

2007-04-16
2007-01-0235
In order to allow continued production of the AM General Optimizer 6500 during MY 2007 through 2010 this IDI engine (Indirect Injection - swirl chamber) requires sophisticated aftertreatment controls while maintaining its fuel economy and durability. The main purpose of the development program was to retain the relatively inexpensive and simple base engine with distributor pump and waste-gated turbocharger, while adding hardware and software components that allow achievement of the phase-in emission standards for 2007 through 2010. The aftertreatment system consists of Diesel Oxidation Catalyst (DOC), NOx Adsorber Catalyst (or DeNOx Trap - DNT) and Diesel Particle Filter (DPF). In addition to the base hardware, an intake air throttle valve and an in-exhaust fuel injector were installed. The presented work will document the development process for a 2004 certified 6.5 l IDI heavy-duty diesel engine to comply with the 2007 heavy-duty emission standards.
Technical Paper

Diesel Combustion Control with Closed-Loop Control of the Injection Strategy

2008-04-14
2008-01-0651
Current and future emission legislations require a significant reduction of engine-out emissions for Diesel engines. For a further reduction of engine-out emissions, different measures are necessary such as: Especially an advanced emission and closed-loop combustion control has gained increased significance during the past years.
X