Refine Your Search

Topic

Author

Search Results

Technical Paper

2-Stroke CAI Operation on a Poppet Valve DI Engine Fuelled with Gasoline and its Blends with Ethanol

2013-04-08
2013-01-1674
Controlled Auto Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), is one of the most promising combustion technologies to reduce the fuel consumption and NOx emissions. Currently, CAI combustion is constrained at part load operation conditions because of misfire at low load and knocking combustion at high load, and the lack of effective means to control the combustion process. Extending its operating range including high load boundary towards full load and low load boundary towards idle in order to allow the CAI engine to meet the demand of whole vehicle driving cycles, has become one of the key issues facing the industrialisation of CAI/HCCI technology. Furthermore, this combustion mode should be compatible with different fuels, and can switch back to conventional spark ignition operation when necessary. In this paper, the CAI operation is demonstrated on a 2-stroke gasoline direct injection (GDI) engine equipped with a poppet valve train.
Technical Paper

A Study of Turbulent Flame Development with Ethanol Fuels in an Optical Spark Ignition Engine

2014-10-13
2014-01-2622
The work was concerned with experimental study of the turbulent flame development process of ethanol fuels in an optically accessed spark ignition research engine. The fuels were evaluated in a single cylinder engine equipped with full-bore overhead optical access and operated at typical stoichiometric part-load conditions. High-speed natural light (or chemiluminescence) imaging and simultaneous in-cylinder pressure data measurement and analysis were used to understand the fundamental influence of both low and high ethanol content on turbulent flame propagation and subsequent mass burning. Causes for the difference in cyclic variations were evaluated in detail, with comparisons made to existing burning velocity correlations where available.
Technical Paper

Analysis of Combustion Cycle-to-Cycle Variation in an Optical Single Cylinder Dual-Fuel Engine

2023-04-11
2023-01-0279
This study aims to improve the dual fuel combustion for low/zero carbon fuels. Seven cases were tested in a single cylinder optical engine and their ignition and combustion characteristics are compared. The baseline case is the conventional diesel combustion. Four cases are diesel-gas (compressed natural gas) dual-fuel combustion operations, and two cases are diesel-hythane combustion. The diesel fuel injection process was visualized by a high-speed copper vapour laser. The combustion processes were recorded with a high-speed camera at 10000 Hz with an engine speed of 1200 rpm. The high-speed recordings for each case included 22 engine cycles and were postprocessed to create one spatial overlapped average combustion image. The average combustion cycle images were then further thresholded and these images were then used in a new method to analyze the cycle-to-cycle variation in a dimensionless, for all cases comparable value.
Technical Paper

CAI Combustion with Methanol and Ethanol in an Air-Assisted Direct Injection SI Engine

2008-06-23
2008-01-1673
CAI combustion has the potential to be the most clean combustion technology in internal combustion engines and is being intensively researched. Following the previous research on CAI combustion of gasoline fuel, systematic investigation is being carried out on the application of bio-fuels in CAI combustion. As part of an on-going research project, CAI combustion of methanol and ethanol was studied on a single-cylinder direct gasoline engine with an air-assisted injector. The CAI combustion was achieved by trapping part of burnt gas within the cylinder through using short-duration camshafts and early closure of the exhaust valves. During the experiment the engine speed was varied from 1200rpm to 2100rpm and the air/fuel ratio was altered from the stoichiometry to the misfire limit. Their combustion characteristics were obtained by analysing cylinder pressure trace.
Technical Paper

Characterization and Potential of Premixed Dual-Fuel Combustion in a Heavy Duty Natural Gas/Diesel Engine

2016-04-05
2016-01-0790
Natural Gas (NG) is currently a cost effective substitute for diesel fuel in the Heavy-Duty (HD) diesel transportation sector. Dual-Fuel engines substitute NG in place of diesel for decreased NOx and soot emissions, but suffer from high engine-out methane (CH4) emissions. Premixed Dual-Fuel Combustion (PDFC) is one method of decreasing methane emissions and simultaneously improving engine efficiency while maintaining low NOx and soot levels. PDFC utilizes an early diesel injection to adjust the flammability of the premixed charge, promoting more uniform burning of methane. Engine experiments were carried out using a NG and diesel HD single cylinder research engine. Key speeds and loads were explored in order to determine where PDFC is effective at reducing engine-out methane emissions over Conventional Dual-Fuel which uses a single diesel injection for ignition.
Technical Paper

Characterization of Low Load Ethanol Dual-Fuel Combustion using Single and Split Diesel Injections on a Heavy-Duty Engine

2016-04-05
2016-01-0778
The use of two different fuels to control the in-cylinder charge reactivity of compression ignition engines has been shown as an effective way to achieve low levels of nitrogen oxides (NOx) and soot emissions. The port fuel injection of ethanol on a common rail, direct injected diesel engine increases this reactivity gradient. The objective of this study is to experimentally characterize the controllability, performance, and emissions of ethanol-diesel dual-fuel combustion in a single cylinder heavy-duty engine. Three different diesel injection strategies were investigated: a late split, an early split, and an early single injection. The experiments were performed at low load, where the fuel conversion efficiency is typically reduced due to incomplete combustion. Ethanol substitution ratios varied from 44-80% on an energy input basis.
Technical Paper

Combustion Visualization and Experimental Study on Multi-Point Micro-Flame Ignited (MFI) Hybrid Lean-Burn Combustion in 4-Stroke Gasoline Engines

2020-09-15
2020-01-2070
Lean-burn combustion is an effective method for increasing the thermal efficiency of gasoline engines fueled with stoichiometric fuel-air mixture, but leads to an unacceptable level of high cyclic variability before reaching ultra-low nitrogen oxide (NOx) emissions emitted from conventional gasoline engines. Multi-point micro-flame ignited (MFI) hybrid combustion was proposed to overcome this problem, and can be can be grouped into double-peak type, ramp type and trapezoid type with very low frequency of appearance. This research investigates the micro-flame ignition stages of double-peak type and ramp type MFI combustion captured by high speed photography. The results show that large flame is formed by the fast propagation of multi-point flame occurring in the central zone of the cylinder in the double-peak type. However, the multiple flame sites occur around the cylinder, and then gradually propagate and form a large flame accelerated by the independent small flame in the ramp type.
Technical Paper

Combustion and Emission Characteristics of a HCCI Engine Fuelled with Different n-Butanol-Gasoline Blends

2014-10-13
2014-01-2668
Biobutanol, i.e. n-butanol, as a second generation bio-derived alternative fuel of internal combustion engines, can facilitate the energy diversification in transportation and reduce carbon dioxide (CO2) emissions from engines and vehicles. However, the majority of research was conducted on spark-ignition engines fuelled with n-butanol and its blend with gasoline. A few investigations were focused on the combustion and exhaust emission characteristics of homogeneous charge compression ignition (HCCI) engines fuelled with n-butanol-gasoline blends. In this study, experiments were conducted in a single cylinder four stroke port fuel injection HCCI engine with fully variable valve lift and timing mechanisms on both the intake and exhaust valves. HCCI combustion was achieved by employing the negative valve overlap (NVO) strategy while being fueled with gasoline (Bu0), n-butanol (Bu100) and their blends containing 30% n-butanol by volume (Bu30).
Technical Paper

Comparison of Conventional vs Reactivity-Controlled Compression Ignition Diesel-Hythane Dual-Fuel Combustion: An Investigation on Engine Performance and Emissions at Low-Load

2023-06-26
2023-01-1203
The exponential rise in greenhouse gas (GHG) emissions into the environment is one of the major concerns of international organisations and governments. As a result, lowering carbon dioxide (CO2) and methane (CH4) emissions has become a priority across a wide range of industries, including transportation sector, which is recognised as one of the major sources of these emissions. Therefore, renewable energy carriers and powertrain technologies, such as the use of alternative fuels and combustion modes in internal combustion engines, are required. Dual-fuel operation with high substitution ratios using low carbon and more sustainable fuels can be an effective short-term solution. Hythane, a blend of 20% hydrogen and 80% methane, could be a potential solution to this problem.
Technical Paper

Comparison of HCCI Combustion Respectively Fueled with Gasoline, Ethanol and Methanol through the Trapped Residual Gas Strategy

2006-04-03
2006-01-0635
In this paper, HCCI combustion characteristics of three typical high octane number fuels, gasoline, ethanol and methanol, are compared in a Ricardo single cylinder port injection engine with compression ratio of 10.5. In order to trap enough high temperature residual gas to heat intake mixture charge for stable HCCI combustion, camshafts of the experimental engine are replaced by a set of special camshafts with low valve lift and short cam duration. The three fuels are injected into the intake port respectively in different mixture volume percentages, which are E0 (100% gasoline), E50 (50% gasoline, 50% ethanol), E100 (100% ethanol), M50 (50% gasoline, 50% methanol) and M100 (100% methanol). This work concentrates on the combustion and emission characteristics and the available HCCI operation range of these fuels. What's more, the detailed comparison of in-cylinder temperature, ignition timing and other parameters has been carried out.
Technical Paper

Comparison of Performance, Efficiency and Emissions between Gasoline and E85 in a Two-Stroke Poppet Valve Engine with Lean Boost CAI Operation

2015-04-14
2015-01-0827
Controlled Auto Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), is one of the most promising combustion technologies to reduce the fuel consumption and NOx emissions. Most research on CAI/HCCI combustion operations have been carried out in 4-stroke gasoline engines, despite it was originally employed to improve the part-load combustion and emission in the two-stroke gasoline engine. However, conventional ported two-stroke engines suffer from durability and high emissions. In order to take advantage of the high power density of the two-stroke cycle operation and avoid the difficulties of the ported engine, systematic research and development works have been carried out on the two-stroke cycle operation in a 4-valves gasoline engine. CAI combustion was achieved over a large range of operating conditions when the relative air/fuel ratio (lambda) was kept at one as measured by an exhaust lambda sensor.
Technical Paper

Computational Study of the Effects of Injection Timing, EGR and Swirl Ratio on a HSDI Multi-Injection Diesel Engine Emission and Performance

2003-03-03
2003-01-0346
Reductions in fuel consumption, noise level, and pollutant emissions such as, Nitrogen Oxide (NOX) and Particulate Matter (PM), from direct-injection (DI) diesel engines are important issues in engine research. To achieve these reductions, many technologies such as high injection pressure, multiple injection, retarded injection timing, EGR, and high swirl ratio have been used in high-efficiency DI diesel engines in order to achieve combustion and emission control. However, each technology has its own advantages and disadvantages, and there is a very strong interaction between these methods when they are simultaneously used in the engine. This study presents a computational study of both the individual effect and their interactions of injection timing, EGR and swirl ratio separately and their interaction in a HSDI common rail diesel engine using the KIVA-3V code.
Technical Paper

Diesel Soot Oxidation under Controlled Conditions

2001-09-24
2001-01-3673
A quantitative relationship between diesel soot oxidation rate and oxidation temperature and oxygen partial pressure was investigated by burning the diesel exhaust soot particles in a controlled flat flame supplied with methane/air/oxygen/nitrogen mixtures. The oxidation temperature and the oxygen partial pressure were controlled in the ranges of 1530 to 1820 K and 0.01 to 0.05 atm (1atm = 1.01325 bar) respectively. Soot particle size distribution measurements were achieved with transmission electron microscopy (TEM) for particle samples that were collected on copper grids at different positions along the flame centerline. Oxidation periods were determined by means of laser Doppler anemometry (LDA). The experimental results showed that the experimental oxidation rates fall between the values predicted by the Nagle and Strickland-Constable formula and those by the Lee formula.
Technical Paper

Dilution Boundary Expansion Mechanism of SI-CAI Hybrid Combustion Based on Micro Flame Ignition Strategy

2019-04-02
2019-01-0954
In decade years, Spark Ignition-Controlled Auto Ignition (SI-CAI) hybrid combustion, also called Spark Assisted Compression Ignition (SACI) has shown its high-efficiency and low emissions advantages. However, high dilution causes the problem of unstable initial ignition and flame propagation, which leads to high cyclic variation of heat release and IMEP. The instability of SI-CAI hybrid combustion limits its dilution degree and its ability to improve the thermal efficiency. In order to solve instability problems and expand the dilution boundary of hybrid combustion, micro flame ignition (MFI) strategy is applied in gasoline hybrid combustion engines. Small amount of Dimethyl Ether (DME) chosen as the ignition fuel is injected into cylinder to form micro flame kernel, which can stabilize the ignition combustion process.
Technical Paper

Dilution Effects on the Controlled Auto-Ignition (CAI) Combustion of Hydrocarbon and Alcohol Fuels

2001-09-24
2001-01-3606
This paper presents results from an experimental programme researching the in-cylinder conditions necessary to obtain homogenous CAI (or HCCI) combustion in a 4-stroke engine. The fuels under investigation include three blends of Unleaded Gasoline, a 95 RON Primary Reference Fuel, Methanol, and Ethanol. This work concentrates on establishing the CAI operating range with regard to Air/Fuel ratio and Exhaust Gas Re-circulation and their effect on the ignition timing, combustion rate and variability, Indicated thermal efficiency, and engine-out emissions such as NOx. Detailed maps are presented, defining how each of the measured variables changes over the entire CAI region. Results indicate that the alcohols have significantly higher tolerance to dilution than the hydrocarbon fuels tested. Also, variations in Gasoline blend have little effect on any of the combustion parameters measured.
Technical Paper

Effect of Injection Timing on Mixture and CAI Combustion in a GDI Engine with an Air-Assisted Injector

2006-04-03
2006-01-0206
The application of controlled auto-ignition (CAI) combustion in gasoline direct injection (GDI) engines is becoming of more interest due to its great potential of reducing both NOx emissions and fuel consumption. Injection timing has been known as an important parameter to control CAI combustion process. In this paper, the effect of injection timing on mixture and CAI combustion is investigated in a single-cylinder GDI engine with an air-assisted injector. The liquid and vapour phases of fuel spray were measured using planar laser induced exciplex fluorescence (PLIEF) technique. The result shows that early injection led to homogeneous mixture but late injection resulted in serious stratification at the end of compression. CAI combustion in this study was realized by using short-duration camshafts and early closure of the exhaust valves. During tests, the engine speed was varied from 1200rpm to 2400rpm and A/F ratio from stoichiometric to lean limit.
Technical Paper

Effect of a split-injections strategy on the atomisation rate for charge stratification using a high pressure gasoline multi-hole injector

2019-12-19
2019-01-2248
Some of the challenges of optimising the gasoline direct-injection engines are achieving high rates of atomisation and evaporation of fuel sprays for effective fuel-air mixture formation. This is especially important for the stratified charge when operating under cold-start and part-load conditions. Poorly mixed charge results in the increased production of total Hydrocarbons and Nitrogen Oxides. Many studies have previously focused on improving the spray characteristics of a single fuel injection strategy from direct-injection gasoline injectors, with fuel rail pressures of up to 20MPa. The current study focuses on a split injections strategy and its influence on the spray's structure, fuel-air mixing and atomisation rates. Short pulse widths in the range of 0.3ms to 0.8ms are employed. In particular, the effects of dwell times between the two injections on the second injection's spray characteristics are evaluated.
Technical Paper

Effects of Air/Fuel Ratios and EGR Rates on HCCI Combustion of n-heptane, a Diesel Type Fuel

2003-03-03
2003-01-0747
The effects of Air/Fuel (A/F) ratios and Exhaust Gas Re-Circulation (EGR) rates on Homogeneous Charge Compression Ignition (HCCI) combustion of n-heptane have been experimentally investigated. The experiments were carried out in a single-cylinder, 4-stroke and variable compression-ratio engine equipped with a port fuel injector. Investigations concentrate on the HCCI combustion of n-heptane at different A/F ratios, EGR rates and their effects on knock limit, engine load, combustion variability, and engine-out emissions such as NOx, CO, and unburned HC. Variations of auto-ignition timings and combustion durations in the two-stage combustion process are analyzed in detail. Results show that HCCI combustion with a diesel type fuel can be implemented at room temperature with a conventional diesel engine compression-ratio. However, its knock limit occurs at very high A/F ratios, although high EGR rates can be tolerated.
Technical Paper

Effects of Direct Injection Timing and Air Dilution on the Combustion and Emissions Characteristics of Stratified Flame Ignited (SFI) Hybrid Combustion in a 4-Stroke PFI/DI Gasoline Engine

2020-04-14
2020-01-1139
Controlled Auto-Ignition (CAI) combustion can effectively improve the thermal efficiency of conventional spark ignition (SI) gasoline engines, due to shortened combustion processes caused by multi-point auto-ignition. However, its commercial application is limited by the difficulties in controlling ignition timing and violent heat release process at high loads. Stratified flame ignited (SFI) hybrid combustion, a concept in which rich mixture around spark plug is consumed by flame propagation after spark ignition and the unburned lean mixture closing to cylinder wall auto-ignites in the increasing in-cylinder temperature during flame propagation, was proposed to overcome these challenges.
Technical Paper

Effects of Ethanol on Part-Load Performance and Emissions Analysis of SI Combustion with EIVC and Throttled Operation and CAI Combustion

2014-04-01
2014-01-1611
Internal combustion engines are subjected to part-load operation more than in full load during a typical vehicle driving cycle. The problem with the Spark Ignition (SI) engine is its inherent low part-load efficiency. This problem arises due to the pumping loses that occur when the throttle closes or partially opens. One way of decreasing the pumping losses is to operate the engine lean or by adding residual gases. It is not possible to operate the engine unthrottled at very low loads due to misfire. However, the load can also be controlled by changing the intake valve closing timing - either early or late intake valve closing. Both strategies reduce the pumping loses and hence increase the efficiency. However the early intake valve closure (EIVC) can be used as mode transition from SI to CAI combustion.
X