Refine Your Search

Search Results

Technical Paper

A Study of Direct Injection Diesel Engine Fueled with Hydrogen

2003-03-03
2003-01-0761
In this study, characteristics of the development and auto-ignition/combustion of hydrogen jets were investigated in a constant-volume vessel. The authors focused on the effects of the jet developing process and thermodynamic states of the ambient gas on auto-ignition delays of hydrogen jets. The results show that the ambient gas temperature and nozzle-hole diameter are significantly effective parameters. By contrast, it is clarified that the ambient gas oxygen concentration has a weak effect on the auto-ignition/combustion of hydrogen jets. Consequently, it is supposed that the mixture formation process is capable of improving the auto-ignition/combustion of hydrogen jets.
Technical Paper

A Study on Higher Thermal Efficiency and Lower Cooling Loss in Diesel Engine

2019-12-19
2019-01-2283
The purpose of this study is to achieve thermal efficiency improvement and cooling loss reduction of a diesel engine with a combustion concept of earlier evaporation, higher entrainment, and compact spray flame. In order to realize this concept, the paper focused on two-component fuel (nC5H12/nC10H22) with high evaporation. In this paper, the effects of two-component fuel on thermal efficiency and exhaust characteristics are examined by using single cylinder diesel engine. In addition, spray characteristics are revealed in an optically accessible chamber and combustion characteristics are revealed by using RCEM.
Technical Paper

Analysis of Knocking Mechanism Applying the Chemical Luminescence Method

1995-02-01
951005
One of the most effective means of improving the thermal efficiency and the specific fuel consumption in spark ignition engines is the increase of the compression ratio. However, there is a limit to it because of the generation of knocking combustion due to the rise of temperature and pressure in the unburnt mixture. Also in turbo charged spark ignition engines, the ignition timing cannot be advanced until MBT in order to avoid the knocking phenomena. Generally speaking, it is very difficult to investigate the phenomena in an actual engine, because there are many restriction and the phenomena are too complex and too fast. According-ly, it is advantageous to reveal the phenomena fundamentally, including the autoignition process of the end-gas by using simplified model equipment. Therefore, a rapid compression and expansion machine (RCEM) with a pan-cake combustion chamber was designed and developed for the experiments presented here.
Technical Paper

Atomization Model in Port Fuel Injection Spray for Numerical Simulation

2023-09-29
2023-32-0091
Computational Fluid Dynamics (CFD) simulation is widely used in the development and validation of automotive engine performance. In engine simulation, spray breakup submodels are important because spray atomization has a significant influence on mixture formation and the combustion process. However, no breakup models have been developed for the fuel spray with plate-type multi-hole nozzle installed in port fuel injection spark ignition (SI) engines. Therefore, the purpose of this study is to simulate spray formation in port fuel injection precisely. The authors proposed the heterogeneous sheet breakup model for gasoline spray injected from plate type multi-hole nozzle. The novel breakup model was developed by clarifying the phenomenological mechanism of the spray atomization process. In this paper, this model was improved in dispersion characteristics and evaluated by the comparison of the model calculation results with experimental data.
Technical Paper

Characteristics of Free and Impinging Gas Jets by Means of Image Processing

1997-02-24
970045
A transient gas jet seems to be a model of a diesel spray because it has no vaporization process. Recently, CNG is utilized in a diesel engine. In the case of diesel engine, sprays or jets have the free state in some cases, and they are impinging surely on the piston surface in the other cases. The 2-D image of acetylene gas with tracer particles was taken by high-speed photography. In both jets, the outer shape was measured on the images and the characteristics of the internal flow was obtained by particle image velocimetry. Then, the physical models of these jets were constructed by use of experimental results.
Technical Paper

Characteristics of Transient Gas Diffusion Flame

1997-10-01
972965
CNG is one of the future fuel for a CI engine. Recently, the general tendency is the use of the high pressure injection system over 100 MPa in a CI engine for the near future severe regulation. Combustion phenomenon in a CI engine with such injection system is like a transient gas diffusion flame. The flow in a gas diffusion flame was investigated by the particle image velocimetry on its 2-D images, the relative soot concentration, the temperature and the relative CO2 concentration was detected in the experiments. And the model of transient gas diffusion flame was constructed by use of experimental data.
Technical Paper

Chemical Kinetics Study on Ignition Characteristics of Biodiesel Surrogates

2011-08-30
2011-01-1926
Methyl butanoate (MB) and methyl decanoate (MD) are surrogates for biodiesel fuels. According to computational results with their detailed reaction mechanisms, MB and MD indicate shorter ignition delays than long alkanes such as n-heptane and n-dodecane do at an initial temperature over 1000 K. The high ignitability of these methyl esters was computationally analyzed by means of contribution matrices proposed by some of the authors. Due to the high acidity of an α-H atom in a carbonyl compound, hydroperoxy radicals are generated out of the equilibrium between forward and backward reactions of O₂ addition to methyl ester radicals by the internal transfer of an α-H atom in the initial stage of an ignition process. Some of the hydroperoxy methyl ester radicals can generate OH to activate initial reactions. MB has an efficient CH₃O formation path via CH₃ generated by the β-scission of an MB radical which has a radical site on the α-C atom to the carbonyl group.
Technical Paper

Detection of Luminescence from Pre-Autoignition Reaction Zone in S.I. Engine

1997-02-24
970508
Knocking phenomenon in a spark ignition engine breaks out due to autoignition in the unburned gas region. Investigation on the pre-autoignition reaction, that is, the reaction of cool and blue flames happening before autoignition must be carried out in detail to control knocking. The reactions appear in an extremely short time before autoignition, so, much difficulties accompany an attempt to grasp the situation. In the experiments presented hear, progress situation of pre-autoignition reaction was made clear by visualized phenomena in a rapid compression and expansion machine (R.C.E.M), which had good reproducibility. Taken by two ultra high-speed video cameras. We determined the ignition delay time was caught by analyzing the emission of light from the combustion chamber before knocking occurrence.
Journal Article

Effect of Blended Fuel of Hydrotreated Vegetable Oil and Fatty Acid Methyl Ester on Spray and Combustion Characteristics

2022-01-09
2022-32-0073
Research on alternative fuels is necessary to reduce CO2 emissions. Hydrotreated Vegetable Oil (HVO) of light fuel physically improves spray and combustion characteristics. Fatty Acid Methyl Ester (FAME) is an oxygenated fuel and its combustion characteristics are chemically improved, although its spray characteristics such as penetration and atomization are deteriorated. The purpose of this study is to understand the effects of blending HVO, which has carbon neutral (CN) characteristics, with FAME, which also has CN characteristics, on spray and combustion characteristics, and to further improve emission such as THC and Smoke. This report presents the effect of the combination of improved spray characteristics and oxygenated fuel on emissions. Spray characteristics such as penetration, spray angle and spray volume were investigated by shadowgraph photography.
Technical Paper

Effect of Different Fuel Supply System on Combustion Characteristics in Hydrogen SI Engine

2022-01-09
2022-32-0092
In recent years, internal combustion engine using hydrogen gas, has attracted attention as one solution to the problem of global warming. Hydrogen gas has excellent combustion characteristics such as wide limits of inflammability and fast burning velocity because of high diffusion rate. Therefore, it has been made to obtain stable ignition and combustion by adding hydrogen with lean mixture in spark ignition engines using hydrocarbon fuels and to be attempted efficient operation by engine researchers. The purpose of this study is to reduce cooling loss in a gas engine using hydrogen gas and hydrogen Mixer system (Mixer) engine was remodeled to hydrogen Port Injection (PI) system engine. In this report, the heterogeneity of hydrogen mixture is clarified by comparing the combustion characteristics of the Mixer and the PI, and the effect of the difference in hydrogen supply systems on cooling loss is system. Ignition delay of the PI system is shorter than that of the Mixer.
Technical Paper

Effect of Different Hydrogen-CNG Supply Method on the Combustion and Emission Characteristics in a SI Engine

2023-09-29
2023-32-0048
The purpose of this study is to reduce cooling loss in gas engines using hydrogen. In this report, the effect of different hydrogen-CNG supply methods on combustion and exhaust characteristics of SI engine were investigated. As a result, the 13A-port-injection caused sharp heat release at hydrogen addition ratio (RH) of 20 %, with a maximum brake thermal efficiency of 27.5 %. Also, the hydrogen-port-injection promotes combustion above RH=40 % and reduces cooling loss, resulting in a maximum brake thermal efficiency of 31.0 % at RH=80 %, 1.8 pt higher than that of the 13A-port-injection.
Technical Paper

Effect of Octane Rating and Charge Stratification on Combustion and Operating Range with DI PCCI Operation

2007-01-23
2007-01-0053
A single cylinder engine has been run with direct-injection premixed charge compression ignition (PCCI) operation. The operation is fueled with primary reference fuels for a wide variety of injection timing and equivalence ratio to investigate the effect of charge stratification and octane rating on PCCI combustion. The test results showed that although the change of the injection timing can gain the high combustion efficiency for a wide range of equivalence ratio, the combustion phasing where the high combustion efficiency is accomplished is not varied only by changing the injection timings. Therefore, the only change of injection timings does not improve the thermal efficiency which is influenced by the combustion phasing. On the other hand, at the fixed compression ratio, inlet air temperature and so on, the octane rating is useful in altering the combustion phasing.
Technical Paper

Effects of Ambient Gas Conditions on Ignition and Combustion Process of Oxygenated Fuel Sprays

2003-05-19
2003-01-1790
This work presents the ignition delay time characteristics of oxygenated fuel sprays under simulated diesel engine conditions. A constant volume combustion vessel is used for the experiments. The fuels used in the experiments were three oxygenated fuels: diethylene glycol dibutyl ether, diethylene glycol diethyl ether, and diethylene glycol dimethyl ether. JIS 2nd class gas oil was used as the reference fuel. The ambient gas temperature and oxygen concentration were ranging from 700 to 1100K and from 21 to 9%, respectively. The results show that the ignition delay of each oxygenated fuel tested in this experiments exhibits shorter than that of gas oil fuel for the wide range of ambient gas conditions. Also, NTC (negative temperature coefficient) behavior which appears under shock tube experiment for homogenous fuel-air mixture was observed on low ambient gas oxygen concentration for each fuel. And at the condition, the ignition behavior exhibits two-stage phase.
Technical Paper

Flame Structure and Combustion Characteristics in Diesel Combustion Fueled with Bio-diesel

2004-03-08
2004-01-0084
The Flame structure and combustion characteristics for two waste-cooking oils were investigated in detail. One fuel is the waste-cooking oil methyl esters. This fuel is actually applied to the garbage collection vehicle with DI diesel engine (B100) and the city bus (B20; 80% gas oil is mixed into B100 in volume) as an alternative fuel of gas oil in Kyoto City. Another one is the fuel with ozone treatment by removing impurities from raw waste-cooking oils. Here, in order to improve the fuel properties, kerosene is mixed 70% volume in this fuel. This mixed fuel (i-BDF) is applied into several tracks and buses in Wakayama City. In the experiments, the used fuels were gas oil, i-BDF, B100 and B20. Spray characteristics and basic combustion properties were measured inside a rapid compression and an expansion machine (RCEM).
Technical Paper

Fundamental Research on Unsteady Pre-mixed Combustion in Non-Uniform Distribution of Fuel Concentration

2001-09-24
2001-01-3487
It is significant for understanding the phenomena in a stratified charge engine and an SI engine with direct injection system to carry out the fundamental research. The experiments were conducted in a constant volume chamber with atmospheric condition. The pre-mixed charge composed of ethylene and air was charged with various equivalence ratio, the second charge with the same composition was injected into the chamber, thereafter, the combustion started by a spark plug. The phenomena were analyzed by use of the experimental results of shadowgraph, [OH] natural emission, pressure history and NOx and UHC in the exhaust gas.
Technical Paper

Measurement and Modeling on Wall Wetted Fuel Film Profile and Mixture Preparation in Intake Port of SI Engine

1999-03-01
1999-01-0798
In SI engines with port injection system, the injected fuel spray adheres surely on the port wall and the inlet valve, consequently, the spray-wall interaction process leads to the generation of unburned hydrocarbons and uncontrollable mixture formation. This paper deals with the fuel mixture preparation process including basic research on characteristics of the wall-wetted fuel film on a flat wall inside a constant volume vessel. In the experiments, iso-octane mixed with biacetyl as a tracer dopant was injected through a pintle type injector against a flat glass wall under the ambient conditions of atmospheric pressure and room temperature. The thickness of the adhered fuel film on the wall was quantitatively measured by using laser induced fluorescence (LIF) technique, which provides 2-D distribution information with high special resolution as a function of the injection duration, the impingement distance from the injector to the wall, and the impingement angle against the wall.
Technical Paper

Mechanism of Combined Combustion of Premixed Gas and Droplets

2002-10-21
2002-01-2843
In an SI engine with direct injection of gasoline (DGI), many small droplets disperse in premixed gas in the cylinder. In a CI engine, diesel spray is injected a cylinder, thus, the situation at the spray periphery is almost the same as that of DGI SI engine. From the standpoint it is useful for understanding the combustion phenomena in both engines to experiment the combined combustion of premixed gas where many small droplets exist. This paper describes this kind of combustion and it seems to be able to apply the results to the simulation of combustion in these engines.
Technical Paper

Mixing and soot formation processes in transient gas jet flame

2000-06-12
2000-05-0075
A transient gas jet and its flame are the most fundamental phenomena of a transient spray and its flame breaking out in a CI engine and an SI engine with the direct injection system. In the case of CNG and LNG engines, the fuel itself is just gaseous state. The 2-LIF technique was applied to the transient gas jet to obtain the mixing process between the surroundings and it, and the simultaneous application of LII and LIS techniques were applied to the transient gas jet flame to obtain the soot formation process.
Technical Paper

Modeling Atomization and Vaporization Processes of Flash-Boiling Spray

2004-03-08
2004-01-0534
Flash-boiling occurs when a fuel is injected to a combustion chamber where the ambient pressure is lower than the saturation pressure of the fuel. It has been known that flashing is a favorable mechanism for atomizing liquid fuels. On the other hand, alternative fuels, such as gaseous fuels and oxygenated fuels, are used to achieve low exhaust emissions in recent years. In general, most of these alternative fuels have high volatility and flash-boiling takes place easily in fuel spray, when they are injected into the combustion chamber of an internal combustion engine under high pressure. In addition, fuel design concept the multicomponent fuel with high and low volatility fuels has been proposed in the previous study in order to control the spray and combustion processes in internal combustion engine. It is found that the multicomponent fuel produce flash-boiling with an increase in the initial fuel temperature.
Technical Paper

On-Board Measurement of Engine Performance and Emissions in Diesel Vehicle Operated with Bio-diesel Fuel

2004-03-08
2004-01-0083
This paper describes the results of on-board measurement of engine performance and emissions in diesel vehicle operated with bio-diesel fuels. Here, two waste-cooking oils were investigated. One fuel is a waste-cooking oil methyl esters. This fuel is actually applied to a garbage collection vehicle with DI diesel engine (B100) and the city bus (B20; 80% gas oil is mixed into B100 in volume) as an alternative fuel of gas oil in Kyoto City. Another one is a fuel with ozone treatment by removing impurities from raw waste-cooking oils. Here, in order to improve the fuel properties, kerosene is mixed 70% volume in this fuel. This mixed fuel (i-BDF) is applied into several tracks and buses in Wakayama City. Then, these 3 bio-diesel fuels were applied to the on-board experiments and the results were compared with gas oil operation case.
X