Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Chameleon Suit – From Potential to Reality

2004-07-19
2004-01-2293
An important, though often unstated, requirement to achieve NASA’s strategic goals will be an Extravehicular Activity (EVA) system that will let future astronauts work safely and effectively at the chosen destinations without imposing unacceptable burdens on the astronauts or the mission systems that support them. Past studies have shown that this may present an insurmountable challenge if pursued with current technologies and system design concepts. With funding from the NASA Institute for Advanced Concepts (NIAC), Hamilton Sundstrand has been studying a conceptual architecture for future EVA systems to meet this challenge. The Chameleon Suit concept shifts the EVA design paradigm from one in which the pressure garment and life support system are separate, largely independent subsystems to one in which the EVA system integrates distributed life support functions with the pressure suit.
Technical Paper

Development of a Membrane Based Gas-Liquid Separator for the Space Station Water Processor

2001-07-09
2001-01-2357
The Water Processor developed for the International Space Station includes a high temperature catalytic reactor that utilizes oxygen gas to oxidize dissolved chemicals. The effluent from the reactor is a mixture of gases (O2, CO2, N2) and hot water. Since the crew has requested that drinking water does not contain any free gas at body temperature (37.8 °C or 100 °F), a phase separator operating at elevated temperatures is required downstream of the catalytic reactor. For this application, Hamilton Sundstrand Space Systems International (HSSSI) has developed a passive Gas Liquid Separator (GLS) that relies on a positive barrier - a membrane - to extract the free gas from the inlet two-phase mixture. The membrane selected is a hollow fiber hydrophobic asymmetric membrane with pore size in the ultra-filtration range. This paper outlines the challenges in both design and operation that were overcome during the development of this device.
Technical Paper

Performance Testing of a New Membrane Evaporator for the Thermoelectric Integrated Membrane Evaporator System (TIMES) Water Processor

2002-07-15
2002-01-2525
The TIMES system was evaluated to determine its ability to process reverse osmosis (RO) brine as one of the Advanced Water Processor steps. Since preliminary testing performed in 1998 showed that the membrane typically used in the process (Nafion 117) offered a very poor ammonia rejection, a search for an alternate membrane exhibiting high ammonia rejection capability was initiated under NASA-JSC funding. This investigation has resulted in the selection of a PolyVinylAlcohol (PVA) composite membrane as a replacement. When processing RO brine and untreated human urine as feeds, the Pervap 2201 membrane showed a 96% ammonia rejection over a large range of ammonia concentration. The water permeation rates in both laboratory-scale and pilot scale testings were also similar to the Nafion. The water permeance of the Pervap 2201 was approximately 7.5 kg/h/m2/atm (1.1 lb/h/m2/psi).
X