Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of a C-Shaped Exhaust After-Treatment System with an Auricle Mixer

2024-01-16
2024-26-0143
Internal combustion engines have been there for nearly a century and half and will continue to remain and play a major role in the mobility industry. Exhaust After-Treatment system (EATS) is like a sibling to the internal combustion engine, since both work in tandem, complementing each other’s functions and contributing to the overall goal of reducing emissions and improving environmental sustainability. The faster adoption of Euro VI emission norms globally and announcement of Euro VII norms, emphasizes the need to continually improve our exhaust after-treatment systems. This paper presents a breakthrough in the development of a C-shaped compact, modular and cost-effective EATS with an auricle mixer, designed at Ashok Leyland. This system is specifically engineered to meet the stringent requirements of BS VI OBD-II emission norms for diesel engine applications and can be upgraded for H2 ICE.
Technical Paper

Predictive under Hood Thermal Management Model

2024-01-16
2024-26-0272
In the automotive industry, thermal management plays a very important role to solve the problems of energy saving and emission. The under hood thermal management is one of the critical aspects in vehicle thermal management since it caters to critical aspects of engine cooling, charge air cooling, air conditioning and turbocharger cooling. The appropriate thermal management of these critical components is necessary for ensuring the appropriate performance by the vehicle. Hence, under-hood thermal management is the core of the integrated vehicle thermal management. In the thermal management analysis approaches, the numerical simulation is widely adopted as an important approach. Hence, in this paper a model is developed in MATLAB to handle 1D parametric analysis of the cooling system, while reducing the testing time and resources taken for the product development. The developed model can be used to evaluate multiple aggregate options for CAC, Radiator, Engine, Fan etc.
Technical Paper

Coupled FEM-DEM for Determination of Payload Distribution on Tipper Load Body

2024-01-16
2024-26-0255
Tippers used for transporting blue metal, construction and mining material is designed with different types of load body to suit the material being carried, capacity and its application. These load bodies are constructed with high strength material to withstand forces under various operating conditions. Structural strength verification of load body using FEM is conducted, by modelling forces due to payload as a pressure function on the panels of the load body. The spatial variation of pressure is typically assumed. In discrete element method (DEM) granular payload material such as gravel, wet or dry sand, coal etc., can be modelled by accounting its flow and interaction with structure of load body for prediction of force/pressure distribution. In this paper, coupled FE-DEM is used for determining pressure distribution on loading surfaces of a tipper body structure of a heavy commercial vehicle during loading, unloading and transportation.
Technical Paper

Determination of the Structural Member Life Cycle without Undergoing Complete Testing Using CAE Input for an Improved Design after Failure Correlation

2024-01-16
2024-26-0333
This case study involves the failure analysis of the wheel arch structure for a commercial truck. The wheel arch is an important vehicle trim aggregate from both the regulatory perspective (spray suppression) as well as from the aesthetics of the truck. But, the durability of this part is affected by the vehicle architecture, vehicle load capacity as well as the operating conditions. This is more critical due to the nature of the overhang experienced by the mounting bracket assemblies that hold these wheel arches/mud flaps. This generally consist of tubular and sheet metal welded structures bolted on to the main chassis long members. These failures were observed in a legacy vehicle, where very little details of the complete vehicle digital simulation and testing performance were readily available.
Technical Paper

Thermal Analysis of Components and Traces on Printed Circuit Boards

2024-01-16
2024-26-0279
High currents flowing through various traces of a printed circuit boards (PCB) causes thermal run away and PCB warpage due to the occurrence of high heat density. The present study discusses on steady state thermal analysis performed in a PCB kept inside an enclosure. Thermal analysis allows PCB designer to quickly move and confirm the component’s placement by examining the temperature plots predicted on the PCB surface. A PCB particularly designed for automated manual transmission (AMT) application employed in Ashok Leyland electric vehicle (EV) trucks is used for this present study. The performed simulations are preliminary level and carried out with commercially available software Altair Simlab ElectroFlo 2022.3. Simlab is a PCB level EDA (Electronic Design Automation) software suite used for design and analysis, and thus helps in minimizing the development cycles.
Technical Paper

Optimization of Oil Quantity in Manual Transmission and Reducing Churning Loss

2024-01-16
2024-26-0346
The gearbox is a crucial aggregate in a diesel truck. Gearboxes must work efficiently to get the job done properly and lubrication is vital to this efficiency. Lubricating oil is like the circulation system of a gearbox. If the oil levels fall too low, the gearbox will likely fail. Gearbox failure can lead to expensive repairs that could be prevented. Besides added costs due to replacement or repair, costs associated with a loss of production could be significant. These issues are why; it is important to understand the consequences of having low lubricant levels. Similarly, higher oil level creates higher churning losses, heating of the Gear oil and oxidation, reduction in efficiency and increased oil leaks. Understanding the functions of gearbox lubricating oil can help you choose the right quantity of prevent gearbox failures.
Technical Paper

An Innovative Approach Towards Low-Emission (BS-IV) & Improved-Performance of Diesel Engine with Conventional Fuel Injection Equipment (Non-Electronic Injectors & E-Governed In-Line Pump)

2021-09-22
2021-26-0060
The conventional internal combustion engines continue to dominate many fields like transportation, agriculture and power generation. Moreover, apprehension over oil price restriction has created an unprecedented demand for fuel economy. Diesel engine is mostly preferred for its higher thermal efficiency, high-torque and outstanding longevity. In recent days with flooded technologies, Uniqueness and the Differentiation of Product play vital role for a successful business in Auto Industry. The present invention is related to the Challenges of Design & Development of Conventional Diesel Engine to meet the stringent emission & performance requirements (BS-IV) of Internal Combustion engines, and more particularly to achieve the targets with conventional Fuel Injection Systems (Non-electronic Fuel Injectors, In-Line Fuel Injection Pump-Governed Electronically) with required sub-systems on IC engine.
Technical Paper

Thermal Management of the Li-Ion Battery Pack with Phase Change Material (PCM)

2021-09-22
2021-26-0140
In electric vehicles, Li-ion battery pack is the most expensive subsystem. Therefore, extending the life of the battery pack and thereby reducing the need for battery pack replacement is necessary to offer a viable product at a competitive cost of ownership. Thermal management of battery pack plays an important role in achieving the above mentioned objective since the performance and life of lithium ion batteries is greatly influenced by temperature. There are various thermal management strategies available to keep the temperature under control like air cooling, chilled liquid cooling and hybrid cooling systems. In this paper, a comparison between phase change material (PCM) and PCM/liquid hybrid cooling is made. The result of the study to understand the applicability of PCM for thermal management of Li-ion batteries is presented. CFD thermal analysis under constant electrical load of 1C rate is carried out.
Technical Paper

Development of Closed Loop Power Recirculating Type Test Rig - Higher Torque Ranges

2021-09-22
2021-26-0491
In the past decades, many impressive progress has been made in the rig development for the gear validation. But, the challenges are to test the entire gear box for the improvement in the single gear alone to ascertain material quality or process improvement, that too with the higher torque range gear boxes, which requires huge investment and power consumption due to high capacity test rig / dynamometer. This paper deals with an experimental validation of the dynamic model for a gear pair test system, representative of a closed loop power recirculating type test rig. Being a closed loop, this system has its own uniqueness, that, it uses the low capacity prime mover, which considers the initial starting loop torque only, to cater the high power requirement in an efficient manner. The key intend of the development of this rig is to reduce the testing from system level to sub component level with low cost operation and more competence for the gears of high torque application.
Technical Paper

Bogie Wear Pad - A Comparative Study

2021-09-22
2021-26-0442
Bogie-type suspensions for trucks are comprised of two axles and a central spring pack on each side of the truck chassis. Bogie suspensions have a good load distribution between the axles and are used for severe applications in trucks, in off-road conditions thereby subjecting them to extreme stain and load. In today’s competitive market scenario, it of utmost importance to minimize down time in commercial vehicles as it directly corresponds to loss in business which leads to customer dissatisfaction. It is therefore essential to optimize and select the right material for each component in the bogie suspension system. This paper deals with the material selection and testing of one such component - Bogie Wear Pad. The bogie wear pad undergoes sliding friction throughout its lifetime during loading and unloading of bogie suspension. Three different materials are selected and their wear is measured under the same conditions of loading.
Technical Paper

Modal Model Correlation of Commercial Vehicle Frame

2019-01-09
2019-26-0212
Design decisions based on the virtual simulations leads to reduced number of prototype testing. Demonstrated correlation between the computer simulations and experimental test results is vital for designers to confidently take simulation driven design decisions. For the virtual design evaluation of durability, ride, handling and NVH performance, demonstration of correlation of structural dynamic characteristics is critical. Modal correlation between CAE and physical testing validates the stiffness and mass distribution used in the FE model by correlating mode shape and mode frequency in the desired frequency range. The objective of this study is to arrive at a method for establishing modal correlation between CAE and experimental test for a bare frame and thereby enabling evaluation of design iterations in virtual environment to achieve modal targets.
Technical Paper

Operational Deflection Shapes & Resonance Analysis Using Road Simulator

2019-01-09
2019-26-0323
In today’s competitive world to stay in the commercial vehicle business, technological advancement is vital. Understanding the various operation modes of a vehicle considering the vibration becomes essential for developing a vehicle free from failures. ODS analysis is a method which is used to visualise the vibration pattern of a vehicle when influenced by known external operating forces. ODS provide very useful information for understanding and evaluating the behavior of the vehicle. This paper discusses about the experiments carried out in vehicle. It details the process of data collection at varying frequency input, understanding the modes at various frequencies, identifying the resonant frequency of various components, understanding the comparison between road inputs and resonance frequencies and the transfer of vibration (Transmissibility) from one component to another.
Technical Paper

Field Failure Simulation of a Non-reactive Suspension Tie Rod for Heavy Commercial Vehicle Using a Road Simulator

2019-01-09
2019-26-0350
The suspension system in a vehicle isolates the frame and body from road shocks and vibrations which would otherwise be transferred to the passengers and goods. Heavier goods vehicles use tandem axles at the rear for load carrying. Both the axles should be inter-connected to eliminate overloading of any one axle when this goes over a bump or a ditch. One of the inter-connecting mechanism used is leaf spring with tie rod, bell crank & linkages, when the first rear axle moves over a bump, the linkages equalize the loading on the second rear axle. This paper details about the failure analysis methodology to simulate the tie rod field failure using a six poster road simulator and to identify the root cause of the failure and further corrective actions.
Technical Paper

Assessment of Water Injection in a Heavy Duty Diesel Engine for NOx Reduction Potential

2019-01-09
2019-26-0145
Diesel engine pollutants include Oxides of Nitrogen (NOx) and Particulate Matter (PM) which are traditionally known for their trade-off characteristics. It’s been a challenge to reduce both pollutants at the source simultaneously, except by efforts through low temperature combustion concepts. NOx formation is dependent on the combustion temperature and thus the in-cylinder reduction of NOx formation remains of utmost importance. In this regard, water injection into the intake of a heavy-duty diesel engine to reduce peak combustion temperature and thereby reducing NOx is found to be a promising technology. Current work involves the use of 1-D thermodynamic simulation using AVL BOOST for modeling the engine performance with water injection. Mixing Controlled Combustion (MCC) model was used which can model the emissions. Initially, the model validation without the water injector was carried out with experimental data.
Technical Paper

Driveline Noise Source Identification and Reduction in Commercial Vehicles

2018-06-13
2018-01-1474
Driveline (DL) is one of the major sources of noise and vibration which excites the vehicle structures across a wide band of frequencies in commercial vehicles (CV). Current work focuses on the driveline noise source identification and its reduction in a heavy commercial vehicle. An abnormal noise is perceived in a CV in high gears at high speeds. This annoying DL noise is subjectively perceived in geared and neutral coast down conditions. Objective NVH assessment including near source noise and vibration of the driveline components was performed to quantify the noise. Initial test results revealed that the DL excitations are aggravated in auxiliary gear box as broadband rattle noise. The design configuration of the DL components and related subsystems such as propeller shafts and gearbox etc. was studied to the find root cause of the excitations. The driveline configuration including the auxiliary gearbox tooth geometry is also scrutinized and modified.
Technical Paper

Pass by Noise Reduction on an Intermediate Commercial Vehicle

2018-06-13
2018-01-1535
A major activity of any new vehicle development program, is to meet legal requirements of local markets. Pass by noise (PBN) test is one of the standardized tests and is used to certify new vehicles/variants for their Noise emissions. Certification for noise emissions of commercial vehicles is achieved by measuring external sound levels according to procedures defined by standards such as IS: 3028 for Indian market. Before a physical proto-vehicle is assembled, various systems and subsystems are readily made available by suppliers off the shelf. During final design validation of the vehicle by mule-vehicle testing, PBN target compliance need be assured for all these systems in order to meet overall PBN target. The PBN on an Intermediate commercial vehicle (ICV) migrated to the latest Exhaust emission standard, was the subject of this study. This vehicle emitted PBN greater than accepted threshold.
Technical Paper

Steering Column Slip Endurance Test & Rig Development

2018-04-03
2018-01-0125
In the emerging commercial vehicle sector, it is very essential to give a product to customer, which is very reliable and less prone to the failures to make the product successful in the market. In order to make it possible, the product is to be validated to replicate the exact field conditions, where it is going to be operated. Lab testing plays a vital role in reproducing the field conditions in order to reduce the lead time in overall product life cycle development process. This paper deals with the design and fabrication of the steering column slip endurance test rig. This rig is capable of generating wear on the steering column splines coating which predominantly leads to failure of steering column. The data acquired from Proving Ground (PG) was analyzed and block cycles were generated with help of data analyzing tools.
Technical Paper

Deriving the Validation Protocol for Isolator Switches Used in Commercial Vehicles

2018-04-03
2018-01-0128
All automotive components undergo stringent testing protocol during the design validation phase. Nevertheless, there are certain components in the field which are seldom captured during design validation. One of these components is the battery isolator switch. This project aims at optimizing a validation methodology for this component based on field usage and conditions. The isolator switch is the main control switch which connects and disconnects the electrical loads from the battery. This switch is used in the electrical circuit of the vehicle to prevent unwanted draining of battery when it is not needed and when the vehicle is in switched off. An electrical version of this switch uses electromagnetic coils to short the contacts. The failure mode being investigated is a high current load causing the input and output terminal to be welded.
Technical Paper

Durability Studies on Gas Engine Oil along with Performance and Emission Characteristics of Heavy Duty Turbocharged Natural Gas Powered Engine

2018-04-03
2018-01-0638
Natural gas has been considered and implemented as alternative fuel to gasoline and diesel powered vehicles worldwide. Although natural gas belongs to petroleum fuel family, it has considerable recourses worldwide to ensure long energy security and comparatively lower carbon to hydrogen ratio that make it more environment friendly. This paper presents the effect of long duration endurance test on gas engine oil along with performance and emission characteristics of 5.8 L turbocharged heavy duty natural gas engine. The six cylinder engine was chosen due to its importance for urban bus transportation. The engine was subjected to long duration endurance test of 800 hrs with closed loop monitoring and controlled conditions as per 6 mode engine load cycle. During the complete endurance test of 800 hours, performance and emission characteristics of the engine were analyzed after completion of every 100 hours as per Full Throttle Performance Test and European Transient Cycle (ETC).
Technical Paper

Performance Prediction of Ethanol Powered Engine Using 1D Thermodynamic Simulation

2017-07-10
2017-28-1958
Bio-fuels potentially represent a more environmentally friendly alternative to fossil fuels as they produce fewer greenhouse gas emissions when burned. Ethanol is one such bio-fuel alternative to the conventional fossil fuels. Towards the initiative of sustainable transportation using alternative fuels, it is attempted to develop an ethanol powered engine for commercial vehicles and this paper attempts to explain the 1D thermodynamic simulation carried out for predicting the engine performance and combustion characteristics, as a part of the engine development program. Engine simulation is becoming an increasingly important engineering tool for reducing the development cost and time and also helps in carrying out various DOE iterations which are rather difficult to be conducted experimentally in any internal combustion engine development program. AVL Boost software is used for modeling and simulation.
X