Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Do Driver Characteristics and Crash Conditions Modify the Effectiveness of Automatic Emergency Braking?

2021-04-06
2021-01-0874
Studies of automatic emergency braking (AEB) find that AEB-equipped vehicles are around half as likely to crash. This study examines whether driver characteristics and road and weather conditions modify this preventive effect of AEB. Toyota production data were merged with police reported crash files from eight U.S. states for crash years 2015 up to 2019 by 17-digit vehicle identification number (VIN). Using a case-control design, this study investigated the relationship of AEB presence with being a case vehicle in a system-relevant crash (the striking vehicle in front-to-rear crash; n=30,056) versus an AEB non-relevant control vehicle (the struck vehicle in a front-to-rear crash; n=62,820). The analysis was stratified by driver characteristics and by weather and road conditions. Logistic regression modeled the relationship, controlling for exposure (vehicle-days) and possible confounding factors.
Journal Article

Effectiveness of Advanced Driver Assistance Systems in Preventing System-Relevant Crashes

2021-04-06
2021-01-0869
This retrospective cohort study uses survival analysis to estimate the effectiveness of Toyota ADAS in helping prevent system-relevant crashes. Toyota production data were merged with police reported crash files from eight U.S. states for crash years 2015 up to 2019 by 17-digit vehicle identification number (VIN). System-relevant crash scenarios included: striking vehicle in front-to-rear, single vehicle run-off-the-road, same-direction sideswipe, head-on, and pedestrian struck. The study vehicle cohort included 11 Toyota/Lexus models, model years 2015 through 2018, sold in the eight study states. ADAS technologies studied included automatic emergency braking (AEB), lane departure warning (LDW), lane keeping assistance (LKA), blind spot monitoring (BSM) and pedestrian automatic emergency braking (PedAEB). Among the study cohort of 2,394,913 vehicles, police reported 308,490 crashes. The crude crash rate ratio (CRR) was 0.61 for AEB-equipped versus non-equipped vehicles.
Technical Paper

Evaluation of Rotation Reduction Features in Infant and Extended-Use Convertible Child Restraint Systems during Frontal and Rear Impacts

2021-04-02
2020-22-0003
A correctly used child restraint system (CRS) is associated with a substantial reduction of injury and mortality risks in motor vehicle crashes and epidemiologic data suggests that toddlers are provided greater protection when restrained in a rearward-facing CRS compared to a forward-facing CRS. Some ‘extended-use’ European CRS models can accommodate children up to six years rearward-facing and have a support (load) leg and/or a pair of lower (Swedish) tethers to reduce rotation during frontal and rear impacts, respectively. Laboratory studies have found that a support leg reduces head and neck injury metrics of anthropomorphic test devices (ATDs) younger than three years in rearward-facing CRS models during frontal impacts.
Technical Paper

Response Ratio Development for Lateral Pendulum Impact with Porcine Thorax and Abdomen Surrogate Equivalents

2020-03-31
2019-22-0007
There has been recent progress over the past 10 years in research comparing 6-year-old thoracic and abdominal response of pediatric volunteers, pediatric post mortem human subjects (PMHS), animal surrogates, and 6-year-old ATDs. Although progress has been made to guide scaling laws of adult to pediatric thorax and abdomen data for use in ATD design and development of finite element models, further effort is needed, particularly with respect to lateral impacts. The objective of the current study was to use the impact response data of age equivalent swine from Yaek et al. (2018) to assess the validity of scaling laws used to develop lateral impact response corridors from adult porcine surrogate equivalents (PSE) to the 3-year-old, 6-year-old, and 10-year-old for the thorax and abdominal body regions.
Technical Paper

The Effect of An Acoustic Startling Warning On Take-Over Reaction Time And Trunk Kinematics for Drivers in Autonomous Driving Scenarios

2020-03-31
2019-22-0022
The Acoustic Startling Pre-stimulus (ASPS, i.e. a loud sound preceding a physical perturbation) was previously found to accelerate action execution in simple flexion exercises. Therefore in this study we examined if ASPS can accelerate take-over reaction times in restrained teen and adult drivers who were asked to reach for the steering wheel while experiencing sled lateral perturbations simulating a vehicle swerve. Results showed that adult drivers lift their hands toward the steering wheel faster with the ASPS versus without (161 ± 23 ms vs 216 ± 27 ms, p<0.003). However this effect was not found in teens or in trials where the drivers were engaged in a secondary task. Adults also showed reduced lateral trunk displacement out of the seat belt with the ASPS. The ASPS could represent a novel warning that reduces take over time and out-of-position movements in critical autonomous driving scenarios.
Technical Paper

Side Impact Assessment and Comparison of Appropriate Size and Age Equivalent Porcine Surrogates to Scaled Human Side Impact Response Biofidelity Corridors

2018-11-12
2018-22-0009
Analysis and validation of current scaling relationships and existing response corridors using animal surrogate test data is valuable, and may lead to the development of new or improved scaling relationships. For this reason, lateral pendulum impact testing of appropriate size cadaveric porcine surrogates of human 3-year-old, 6-year-old, 10-year-old, and 50th percentile male age equivalence, were performed at the thorax and abdomen body regions to compare swine test data to already established human lateral impact response corridors scaled from the 50th percentile human adult male to the pediatric level to establish viability of current scaling laws. Appropriate Porcine Surrogate Equivalents PSE for the human 3-year-old, 6-year-old, 10-year-old, and 50th percentile male, based on whole body mass, were established. A series of lateral impact thorax and abdomen pendulum testing was performed based on previously established scaled lateral impact assessment test protocols.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs - Part III: Development of Transfer Functions

2018-04-03
2018-01-1444
An understanding of stiffness characteristics of different body regions, such as thorax, abdomen and pelvis of ES-2re and SID-IIs dummies under controlled laboratory test conditions is essential for development of both compatible performance targets for countermeasures and occupant protection strategies to meet the recently updated FMVSS214, LINCAP and IIHS Dynamic Side Impact Test requirements. The primary purpose of this study is to determine the transfer functions between the ES-2re and SID-IIs dummies for different body regions under identical test conditions using flat rigid wall sled tests. The experimental set-up consists of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and femur/knee impacting a stationary dummy seated on a rigid low friction seat at a pre-determined velocity.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs - Part I: ES-2re

2018-04-03
2018-01-1449
The main purpose of this study was to determine the impact responses of the different body regions (shoulder, thorax, abdomen and pelvis/leg) of the ES-2re and SID-IIs dummies using rigid wall impacts under different initial test conditions. The experimental set-up consisted of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and knee impacting a stationary dummy seated on a rigid seat at a pre-determined velocity. The relative location and orientation of the load-wall plates was adjusted relative to the body regions of the ES-2re and SID-IIs dummies respectively.
Journal Article

Finite-Element-Based Transfer Equations: Post-Mortem Human Subjects versus Hybrid III Test Dummy in Frontal Sled Impact

2015-04-14
2015-01-1489
Transfer or response equations are important as they provide relationships between the responses of different surrogates under matched, or nearly identical loading conditions. In the present study, transfer equations for different body regions were developed via mathematical modeling. Specifically, validated finite element models of the age-dependent Ford human body models (FHBM) and the mid-sized male Hybrid III (HIII50) were used to generate a set of matched cases (i.e., 192 frontal sled impact cases involving different restraints, impact speeds, severities, and FHBM age). For each impact, two restraint systems were evaluated: a standard three-point belt with and without a single-stage inflator airbag. Regression analyses were subsequently performed on the resulting FHBM- and HIII50-based responses. This approach was used to develop transfer equations for seven body regions: the head, neck, chest, pelvis, femur, tibia, and foot.
Journal Article

Finite-Element-Based Transfer Equations: Post-Mortem Human Subjects versus Hybrid III Test Dummy in Blunt Impact

2014-04-01
2014-01-0486
In the present study, transfer equations relating the responses of post-mortem human subjects (PMHS) to the mid-sized male Hybrid III test dummy (HIII50) under matched, or nearly-identical, loading conditions were developed via math modeling. Specifically, validated finite element (FE) models of the Ford Human Body Model (FHBM) and the HIII50 were used to generate sets of matched cases (i.e., 256 frontal impact cases involving different impact speeds, severities, and PMHS age). Regression analyses were subsequently performed on the resulting age-dependent FHBM- and HIII50-based responses. This approach was conducted for five different body regions: head, neck, chest, femur, and tibia. All of the resulting regression equations, correlation coefficients, and response ratios (PHMS relative to HIII50) were consistent with the limited available test-based results.
Technical Paper

Biomechanical Considerations for Assessing Interactions of Children and Small Occupants with Inflatable Seat Belts

2013-11-11
2013-22-0004
NHTSA estimates that more than half of the lives saved (168,524) in car crashes between 1960 and 2002 were due to the use of seat belts. Nevertheless, while seat belts are vital to occupant crash protection, safety researchers continue efforts to further enhance the capability of seat belts in reducing injury and fatality risk in automotive crashes. Examples of seat belt design concepts that have been investigated by researchers include inflatable, 4-point, and reverse geometry seat belts. In 2011, Ford Motor Company introduced the first rear seat inflatable seat belts into production vehicles. A series of tests with child and small female-sized Anthropomorphic Test Devices (ATD) and small, elderly female Post Mortem Human Subjects (PMHS) was performed to evaluate interactions of prototype inflatable seat belts with the chest, upper torso, head and neck of children and small occupants, from infants to young adolescents.
Technical Paper

Occupant Kinematics and Shoulder Belt Retention in Far-Side Lateral and Oblique Collisions: A Parametric Study

2013-11-11
2013-22-0014
In far-side impacts, head contact with interior components is a key injury mechanism. Restraint characteristics have a pronounced influence on head motion and injury risk. This study performed a parametric examination of restraint, positioning, and collision factors affecting shoulder belt retention and occupant kinematics in far-side lateral and oblique sled tests with post mortem human subjects (PMHS). Seven PMHS were subjected to repeated tests varying the D-ring position, arm position, pelvis restraint, pre-tensioning, and impact severity. Each PMHS was subjected to four low-severity tests (6.6 g sled acceleration pulse) in which the restraint or position parameters were varied and then a single higher-severity test (14 g) with a chosen restraint configuration (total of 36 tests). Three PMHS were tested in a purely lateral (90° from frontal) impact direction; 4 were tested in an oblique impact (60° from frontal). All subjects were restrained by a 3-point seatbelt.
Technical Paper

The Effect of Pretensioning and Age on Torso Rollout in Restrained Human Volunteers in Far-Side Lateral and Oblique Loading

2012-10-29
2012-22-0012
Far-side side impact loading of a seat belt restrained occupant has been shown to lead to torso slip out of the shoulder belt. A pretensioned seat belt may provide an effective countermeasure to torso rollout; however the effectiveness may vary with age due to increased flexibility of the pediatric spine compared to adults. To explore this effect, low-speed lateral (90°) and oblique (60°) sled tests were conducted using male human volunteers (20 subjects: 9-14 years old, 10 subjects: 18-30 years old), in which the crash pulse safety envelope was defined from an amusement park bumper-car impact. Each subject was restrained by a lap and shoulder belt system equipped with an electromechanical motorized seat belt retractor (EMSR) and photo-reflective targets were attached to a tight-fitting headpiece or adhered to the skin overlying key skeletal landmarks.
Journal Article

Headform Impact Tests to Assess Energy Management of Seat Back Contact Points Associated with Head Injury for Pediatric Occupants

2012-04-16
2012-01-0561
Head injuries are the most common injuries sustained by children in motor vehicle crashes regardless of age, restraint and crash direction. Previous research identified the front seat back as relevant contact point associated with head injuries sustained by restrained rear seated child occupants. The objective of this study was to conduct a test series of headform impacts to seat backs to evaluate the energy management characteristics of relevant contact points for pediatric head injury. A total of eight seats were tested: two each of 2007 Ford Focus, Toyota Corolla, 2006 Volvo S40, and 2008 Volkswagen Golf. Five to six contact points were chosen for each unique seat model guided by contact locations determined from real world crashes. Each vehicle seat was rigidly mounted in the center track position with the seatback angle adjusted to 70 degrees above the horizontal.
Technical Paper

Biomechanical Assessment of a Rear-Seat Inflatable Seatbelt in Frontal Impacts

2011-11-07
2011-22-0008
This study evaluated the biomechanical performance of a rear-seat inflatable seatbelt system and compared it to that of a 3-point seatbelt system, which has a long history of good real-world performance. Frontal-impact sled tests were conducted with Hybrid III anthropomorphic test devices (ATDs) and with post mortem human subjects (PMHS) using both restraint systems and a generic rear-seat configuration. Results from these tests demonstrated: a) reduction in forward head excursion with the inflatable seatbelt system when compared to that of a 3-point seatbelt and; b) a reduction in ATD and PMHS peak chest deflections and the number of PMHS rib fractures with the inflatable seatbelt system and c) a reduction in PMHS cervical-spine injuries, due to the interaction of the chin with the inflated shoulder belt. These results suggest that an inflatable seatbelt system will offer additional benefits to some occupants in the rear seats.
Technical Paper

Development and Validation of Age-Dependent FE Human Models of a Mid-Sized Male Thorax

2010-11-03
2010-22-0017
The increasing number of people over 65 years old (YO) is an important research topic in the area of impact biomechanics, and finite element (FE) modeling can provide valuable support for related research. There were three objectives of this study: (1) Estimation of the representative age of the previously documented Ford Human Body Model (FHBM)~an FE model which approximates the geometry and mass of a mid-sized male, (2) Development of FE models representing two additional ages, and (3) Validation of the resulting three models to the extent possible with respect to available physical tests. Specifically, the geometry of the model was compared to published data relating rib angles to age, and the mechanical properties of different simulated tissues were compared to a number of published aging functions. The FHBM was determined to represent a 53-59 YO mid-sized male. The aforementioned aging functions were used to develop FE models representing two additional ages: 35 and 75 YO.
Technical Paper

Comparison of Kinematic Responses of the Head and Spine for Children and Adults in Low-Speed Frontal Sled Tests

2009-11-02
2009-22-0012
Previous research has suggested that the pediatric ATD spine, developed from scaling the adult ATD spine, may not adequately represent a child's spine and thus may lead to important differences in the ATD head trajectory relative to a human. To gain further insight into this issue, the objectives of this study were, through non-injurious frontal sled tests on human volunteers, to 1) quantify the kinematic responses of the restrained child's head and spine and 2) compare pediatric kinematic responses to those of the adult. Low-speed frontal sled tests were conducted using male human volunteers (20 subjects: 6-14 years old, 10 subjects: 18-40 years old), in which the safety envelope was defined from an amusement park bumper-car impact.
Technical Paper

Methods for Determining Pediatric Thoracic Force-Deflection Characteristics From Cardiopulmonary Resuscitation

2008-11-03
2008-22-0004
Accurate pediatric thoracic force and deflection data are critical to develop biofidelic pediatric anthropomorphic test devices (ATDs) used in designing motor vehicle safety systems for child occupants. Typically, postmortem human subject (PMHS) experiments are conducted to gather such data. However, there are few pediatric PMHS available for impact research; therefore, novel methods are required to determine pediatric biomechanical data from children. In this study, we have leveraged the application of chest compressions provided in the clinical environment during pediatric cardiopulmonary resuscitation (CPR) to collect this fundamental data. The maximum deflection of the chest during CPR is in the range of chest deflections in PMHS impact experiments and therefore CPR exercises the chest in ways that are meaningful for biofidelity assessment. Thus, the goal of this study was to measure the force-deflection characteristics of the thorax of children and young adults during CPR.
Technical Paper

Biomechanical Response of the Pediatric Abdomen, Part 2: Injuries and Their Correlation with Engineering Parameters

2008-11-03
2008-22-0006
This paper describes the injuries generated during dynamic belt loading to a porcine model of the 6-year-old human abdomen, and correlates injury outcomes with measurable parameters. The test fixture produced transverse, dynamic belt loading on the abdomen of 47 immediately post-mortem juvenile swine at two locations (upper/lower), with penetration magnitudes ranging from 23% – 65% of the undeformed abdominal depth, with and without muscle tensing, and over a belt penetration rate range of 2.9 m/s – 7.8 m/s. All thoracoabdominal injuries were documented in detail and then coded according to the Abbreviated Injury Scale (AIS). Observed injuries ranged from AIS 1 to AIS 4. The injury distribution matched well the pattern of injuries observed in a large sample of children exposed to seatbelt loading in the field, with most of the injuries in the lower abdomen.
Technical Paper

Impact Response and Biomechanical Analysis of the Knee-Thigh-Hip Complex in Frontal Impacts with a Full Human Body Finite Element Model

2008-11-03
2008-22-0019
Changes in vehicle safety design technology and the increasing use of seat-belts and airbag restraint systems have gradually changed the relative proportion of lower extremity injuries. These changes in real world injuries have renewed interest and the need of further investigation into occupant injury mechanisms and biomechanical impact responses of the knee-thigh-hip complex during frontal impacts. This study uses a detailed finite element model of the human body to simulate occupant knee impacts experienced in frontal crashes. The human body model includes detailed anatomical features of the head, neck, shoulder, chest, thoracic and lumbar spine, abdomen, pelvis, and lower and upper extremities. The material properties used in the model for each anatomic part of the human body were obtained from test data reported in the literature. The human body model used in the current study has been previously validated in frontal and side impacts.
X