Refine Your Search

Topic

Author

Search Results

Standard

Devices for Use in Defining and Measuring Vehicle Seating Accommodation

2024-05-20
WIP
J826
The devices of this SAE Standard provide the means by which passenger compartment dimensions can be obtained using a deflected seat rather than a free seat contour as a reference for defining seating space. All definitions and dimensions used in conjunction with this document are described in SAE J1100. These devices are intended only to apply to the driver side or center occupant seating spaces and are not to be construed as instruments which measure or indicate occupant capabilities or comfort. This document covers only one H-point machine installed on a seat during each test. Certified H point templates and machines can be purchased from:SAE International400 Commonwealth DriveWarrendale, PA 15096-0001Specific procedures are included in Appendix A for seat measurements in short- and long-coupled vehicles and in Appendix B for measurement of the driver seat cushion angle. Specifications and a calibration inspection procedure for the H point machine are given in Appendix C.
Standard

OnQue Digital Standards System - Standards

2024-05-20
/onque-digital-standards
Now Available from SAE International, SAE OnQue is a revolutionary digital standards solution that optimizes the way automotive and aerospace engineers access standards.
Best Practice

AVSC Best Practice for Core Automated Vehicle Safety Information

2024-05-14
CURRENT
AVSC-D-02-2024
Automated driving system (ADS) manufacturers, developers, and operators need to provide clear information on their safety approach to relevant stakeholders. Explainability to diverse audiences helps build trust in statements from these organizations towards the shared value of safety. A defined list of core safety topics can help set expectations when communicating deployment and use-case-specific automated vehicle (AV) safety information. The topics listed in this best practice are implementation-agnostic and broadly applicable. This best practice describes how safety is continuous and connected throughout lifecycle stages and highlights considerations when including safety metrics as part of the communicated information. It lists topics that are considered core, provides a rationale, illustrative examples where applicable, suggestions of content that could be included for the example, and lists references and industry examples for further information.
Best Practice

Lighting and Visual Information for Vulnerable Road User (VRU) Safety: An Introductory Review

2024-05-03
CURRENT
VRUSC-002-2024
Injuries and fatalities among pedestrians, cyclists, scooterists, highway road workers, and safety and emergency personnel—often referred to as vulnerable road users (VRUs)—continue to rise at alarming rates worldwide. Emphasizing the urgent need for enhanced safety measures, this study, commissioned by the Vulnerable Road User Safety Consortium™ (VRUSC) and conducted by the Light and Health Research Center at the Icahn School of Medicine at Mount Sinai, evaluates the potential effectiveness of lighting and visual information systems in improving VRU safety. The white paper presents a synthesis of published research on lighting and markings from the perspective of both human drivers and machine vision systems. It identifies potential preliminary guidelines for the intensity, color, temporal, and spatial characteristics of lighting and visual information that can help prevent crashes involving VRUs.
Standard

Performance Requirements for Motor Vehicle Headlamps

2024-04-10
WIP
J1383
This SAE Recommended Practice is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. This document establishes performance requirements for headlamps.
Standard

Automated Driving System (ADS) Marker Lamp

2024-04-10
WIP
J3134
This SAE Recommended Practice provides guidelines for the use, performance, installation, activation, and switching of marking lamps on ADS-equipped vehicles.
Best Practice

AVSC Best Practice for First Responder Interactions with Fleet-Managed Automated Driving System-Dedicated Vehicles (ADS-DVs)

2024-04-04
CURRENT
AVSC-I-01-2024
This AVSC best practice was first published in 2020 and has been revised to cast expanded role definitions, rearrangement of use cases in Section 4 based on severity of risk, re-creation of Table 4 in 5.4 as a checklist and moved to Appendix B, as well as clarification of sections, examples, and terms throughout the document. This document outlines interactions between first responders and ADS-DVs (SAE level 4 and level 5). It builds on earlier work done by the Crash Avoidance Metrics Partners (CAMP), detailing three types of interactions first responders may encounter: direct, indirect, and informational. In addition, a standardized framework with recommendations for an interaction plan is laid out for ADS developers, manufacturers, and fleet operators which may assist first responders in both emergency and non-emergency situations involving ADS-DVs.
Standard

Minimum Requirements for Road Geometry and Attributes Definition

2024-04-01
CURRENT
J2945/A_202404
This report specifies the minimum requirements for the Road Geometry and Attributes (RGA) data set (DS) to support road geometry related motor vehicle safety applications. Contained in this report are a concept of operations, requirements, and design, developed using a detailed systems engineering process. Utilizing the requirements, the RGA DS is defined, which includes the DS Abstract Syntax Notation One (ASN.1) format, data frames, and data element definitions. The requirements are intended to enable the exchange of the messages and their DS information to provide the desired interoperability and data integrity to support the applications considered within this report, as well as other applications which may be able to utilize the DS information. System requirements beyond this are outside the scope of this report.
Standard

Engine and Transmission Identification Numbers

2024-03-18
CURRENT
J129_202403
This SAE Recommended Practice has been established to provide direction for the design and installation of an identification number (IN) as assigned to vehicle engines, transmissions, and transaxles. The IN is used for tracking or traceability of these components. In adhering to these recommended practices, facility of application in factory production and appearance quality are matters for manufacturer control. Reference SAE J853.
Standard

Vision Factors Considerations in Rearview Mirror Design

2024-03-18
CURRENT
J985_202403
The design and location of rear-viewing mirrors or systems, and the presentation of the rear view to the driver can best be achieved if the designer and the engineer have adequate references available on the physiological functions of head and eye movements and on the perceptual capabilities of the human visual system. The following information and charts are provided for this purpose. For more complete information of the relationship of vision to forward vision, see SAE SP-279.
Standard

Motor Vehicle Brake Fluid

2024-03-12
CURRENT
J1703_202403
This SAE Standard covers motor vehicle brake fluids of the nonpetroleum type, based upon glycols, glycol ethers, and appropriate inhibitors, for use in the braking system of any motor vehicle such as a passenger car, truck, bus, or trailer. These fluids are not intended for use under arctic conditions. These fluids are designed for use in braking systems fitted with rubber cups and seals made from styrene-butadiene rubber (SBR), or a terpolymer of ethylene, propylene, and a diene (EPDM).
Standard

Motor Vehicle Brake Fluid Based Upon Glycols, Glycol Ethers, and the Corresponding Borates

2024-03-12
CURRENT
J1704_202403
This SAE Standard covers motor vehicle brake fluids of the nonpetroleum type, based upon glycols, glycol ethers, and borates of glycol ethers, and appropriate inhibitors for use in the braking system of any motor vehicle, such as a passenger car, truck, bus, or trailer. These fluids are not intended for use under arctic conditions. These fluids are designed for use in braking systems fitted with rubber cups and seals made from styrene-butadiene rubber (SBR) or a terpolymer of ethylene, propylene, and a diene (EPDM).
Standard

Digital Annex of Diagnostic Trouble Code Definitions and Failure Type Byte Definitions

2024-03-06
CURRENT
J2012DA_202403
The J2012 Digital Annex of Diagnostic Trouble Code Definitions Spreadsheet provides DTC information in an excel format for use in your organization's work processes. The column headings include the same information as contained in the J2012 standard. Information in the excel spreadsheet will be updated several times annually and the spreadsheet includes a column heading denoting which DTCs have been updated in the current version.
X