Refine Your Search

Topic

Author

Affiliation

Search Results

2023 Defense Maintenance and Logistics Exhibition

2024-05-10
Showcase solutions that forge readiness, enhance your presence and build brand recognition among the DoD Maintenance Symposium audience by sponsoring, exhibiting, and/or advertising at the co-located 2023 Defense Maintenance and Logistics Exhibition.
Journal Article

3D Coverage Control and Target Orientation Alignment Using Unmanned Ground Vehicle with Onboard Camera Sensor

2023-04-11
2023-01-0693
This paper addresses a three dimensional (3D) mission domain coverage control problem combined with camera pose control to align towards specific objects of interest. We consider an unmanned ground vehicle (UGV) based on a unicycle kinematics model with an onboard camera sensor based on a visual perspective sensor model. The coverage control problem has been researched in large part for planar domains, which is however not sufficient for real world applications for UGV navigation. Furthermore, in contrast to coverage control of points in the environment, when dealing with objects of interest, it is more amicable to consider that there exist certain orientations to which the camera must align itself to properly cover the object and make ‘sense’ of it. Hence, we seek to derive both UGV coverage control law for 3D mission domains and onboard camera pose control considering target orientation.
Technical Paper

A Fast Running Loading Methodology for Ground Vehicle Underbody Blast Events

2018-04-03
2018-01-0620
A full-system, end-to-end blast modeling and simulation of vehicle underbody buried blast events typically includes detailed modeling of soil, high explosive (HE) charge and air. The complex computations involved in these simulations take days to just capture the initial 50-millisecond blast-off phase, and in some cases, even weeks. The single most intricate step in the buried blast event simulation is in the modeling of the explosive loading on the underbody structure from the blast products; it is also one of the most computationally expensive steps of the simulation. Therefore, there is significant interest in the modeling and simulation community to develop various methodologies for fast running tools to run full simulation events in quicker turnarounds of time.
Standard

A Guide to APU Health Management

2023-09-15
CURRENT
AIR5317A
AIR5317 establishes the foundation for developing a successful APU health management capability for any commercial or military operator, flying fixed wing aircraft or rotorcraft. This AIR provides guidance for demonstrating business value through improved dispatch reliability, fewer service interruptions, and lower maintenance costs and for satisfying Extended Operations (ETOPS) availability and compliance requirements.
X