Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Current and Torque Harmonics Analysis of Triple Three-Phase Permanent-Magnet Synchronous Machines with Arbitrary Phase Shift Based on Model-in-the-Loop

2024-07-02
2024-01-3025
Multiple three-phase machines have become popular in recent due to their reliability, especially in the ship and airplane propulsions. These systems benefit greatly from the robustness and efficiency provided by such machines. However, a notable challenge presented by these machines is the growth of harmonics with an increase in the number of phases, affecting control precision and inducing torque oscillations. The phase shift angles between winding sets are one of the most important causes of harmonics in the stator currents and machine torque. Traditional approaches in the study of triple-three-phase or nine-phase machines mostly focus on specific phase shift, lacking a comprehensive analysis across a range of phase shifts. This paper discusses the current and torque harmonics of triple-three-phase permanent magnet synchronous machines (PMSM) with different phase shifts. It aims to analyze and compare the impacts of different phase shifts on harmonic levels.
Technical Paper

Design of an Alternative Hardware Abstraction Layer for Embedded Systems with Time-Controlled Hardware Access

2024-07-02
2024-01-2989
This paper proposes a novel approach to the design of a Hardware Abstraction Layer (HAL) specifically tailored to embedded systems, placing a significant emphasis on time-controlled hardware access. The general concept and utilization of a HAL in industrial projects are widespread, serving as a well-established method in embedded systems development. HALs enhance application software portability, simplify underlying hardware usage by abstracting its inherent complexity and reduce overall development costs through software reusability. Beyond these established advantages, this paper introduces a conceptual framework that addresses critical challenges related to debugging and mitigates input-related problems often encountered in embedded systems. This becomes particularly pertinent in the automotive context, where the intricate operational environment of embedded systems demands robust solutions. The HAL design presented in this paper mitigates these issues.
Technical Paper

Reduction of Flow-induced Noise in Refrigeration Cycles

2024-07-02
2024-01-2972
In electrified vehicles, auxiliary units can be a dominant source of noise, one of which is the refrigerant scroll compressor. Compared to vehicles with combustion engines, e-vehicles require larger refrigerant compressors, as in addition to the interior, also the battery and the electric motors have to be cooled. Currently, scroll compressors are widely used in the automotive industry, which generate one pressure pulse per revolution due to their discontinuous compression principle. This results in speed-dependent pressure fluctuations as well as higher-harmonic pulsations that arise from reflections. These fluctuations spread through the refrigeration cycle and cause the vibration excitation of refrigerant lines and heat exchangers. The sound transmission path in the air conditioning heat exchanger integrated in the dashboard is particularly critical. Various silencer configurations can be used to dampen these pulsations.
Technical Paper

Low NOx Emissions Performance after 800,000 Miles Aging Using CDA and an Electric Heater

2024-07-02
2024-01-3011
Engine and aftertreatment solutions have been identified to meet the upcoming ultra-low NOX regulations on heavy duty vehicles in the United States and Europe. These standards will require changes to current conventional aftertreatment systems for dealing with low exhaust temperature scenarios while increasing the useful life of the engine and aftertreatment system. Previous studies have shown feasibility of meeting the US EPA and California Air Resource Board (CARB) requirements. This work includes a 15L diesel engine equipped with cylinder deactivation (CDA) and an aftertreatment system that was fully DAAAC aged to 800,000 miles. The aftertreatment system includes an e-heater (electric heater), light-off Selective Catalytic Reduction (LO-SCR) followed by a primary aftertreatment system containing a DPF and SCR.
Technical Paper

Impact of AdBlue Composition and Water Purity on Particle Number Increase

2024-07-02
2024-01-3012
Previous studies have shown that dosing AdBlue into the exhaust system of diesel engines to reduce nitrogen oxides can lead to an increase in the number of particles (PN). In addition to the influencing factors of exhaust gas temperature, exhaust gas mass flow and dosing quantity, the dosed medium itself (AdBlue) is not considered as a possible influence due to its regulation in ISO standard 22241. However, as the standard specifies limit value ranges for the individual regulated properties and components for newly sold AdBlue, in reality there is still some margin in the composition. This paper investigates the particle number increase due to AdBlue dosing using several CPCs. The increase in PN is determined by measuring the number of particles after DPF and thus directly before dosing as well as tailpipe. Several AdBlue products from different sources and countries are measured and their composition is also analyzed with regard to the limit values regulated in the standard.
Technical Paper

The influence of design operating conditions on engine coolant pump absorption in real driving scenarios.

2024-06-12
2024-37-0015
Reducing CO2 emissions in on-the-road transport is important to limit global warming and follow a green transition towards net zero Carbon by 2050. In a long-term scenario, electrification will be the future of transportation. However, in the mid-term, the priority should be given more strongly to other technological alternatives (e.g., decarbonization of the electrical energy and battery recharging time). In the short- to mid-term, the technological and environmental reinforcement of ICEs could participate in the effort of decarbonization, also matching the need to reduce harmful pollutant emissions, mainly during traveling in urban areas. Engine thermal management represents a viable solution considering its potential benefits and limited implementation costs compared to other technologies. A variable flow coolant pump actuated independently from the crankshaft represents the critical component of a thermal management system.
Technical Paper

Experimental and Simulation Study of Zero Flow Impact on Hybrid Vehicle Emissions

2024-06-12
2024-37-0036
Combustion engines in hybrid vehicles turn on and off several times during a typical passenger car trip. Each engine restart may pose a risk of excessive tailpipe emissions in real-drive conditions if the after-treatment system fails to maintain an adequate temperature level during zero flow. In view of the tightening worldwide tailpipe emissions standards and real-world conformity requirements, it is important to detect and resolve such risks via cost-effective engineering tools relying on accurate 3d analysis of the thermal and chemical behavior of exhaust systems. In this work, we present a series of experiments to examine the impact of zero-flow duration on the exhaust system cooling and subsequent emissions risk. We also present a catalyst model calibrated to predict the 3d thermal and chemical behavior under normal and zero flow conditions. Particular emphasis is given to the phenomena of free convection and thermal radiation dominating the heat transfer at zero flow.
Technical Paper

Effect of Dithering on post-catalyst exhaust gas composition and on short time regeneration of deactivated PdO/Al2O3 catalysts under real engine conditions

2024-06-12
2024-37-0002
Fossil fuels such as natural gas used in engines still play the most important role worldwide despite such measures as the German energy transition which however is also exacerbating climate change as a result of carbon dioxide emissions. One way of reducing carbon dioxide emissions is the choice of energy sources and with it a more favourable chemical composition. Natural gas, for instance, which consist mainly of methane, has the highest hydrogen to carbon ratio of all hydrocarbons, which means that carbon dioxide emissions can be reduced by up to 35% when replacing diesel with natural gas. Although natural gas engines show an overall low CO2 and pollutant emissions level, methane slip due to incomplete combustion occurs, causing methane emissions with a more than 20 higher global warming potential than CO2.
Technical Paper

Numerical Study of Application of Gas Foil Bearings in High-Speed Drivelines

2024-06-12
2024-01-2941
Gas bearings are an effective solution to high-speed rotor applications for its contamination free, reduced maintenance and higher reliability. However, low viscosity of gas leads to lower dynamic stiffness and damping characteristics resulting in low load carrying capacity and instability at higher speeds. Gas bearings can be enhanced by adding a foil structure commonly known as gas foil bearings (GFBs), whose dynamic stiffness can be tailored by modifying the geometry and the material properties resulting in better stability and higher load carrying capacity. A detailed study is required to assess the performance of high-speed rotor systems supported on GFBs, therefore in this study a bump type GFB is analyzed for its static and dynamic characteristics. The static characteristics are obtained by solving the non-linear Reynolds equation through an iterative procedure.
Technical Paper

Choosing the Best Lithium Battery Technology in the Hybridization of Ultralight Aircraft

2024-06-12
2024-37-0017
Many research centers and companies in general aviation have been devoting efforts to the electrification of propulsive plants to reduce environmental impact and/or increase safety. Even if the final goal is the elimination of fossil fuels, the limitations of today's battery in terms of energy and power densities suggest the adoption of hybrid-electric solutions that combine the advantages of conventional and electric propulsive systems, namely reduced fuel consumption, high peak power, and increased safety deriving from redundancy. Today, lithium batteries are the best commercial option for the electrification of all means of transportation. However, lithium batteries are a family of technologies that presents a variety of specifications in terms of gravimetric and volumetric energy density, discharge and charge currents, safety, and cost.
Technical Paper

Optimization of a Sliding Rotary Vane Pump for Heavy Duty Internal Combustion Engine cooling

2024-06-12
2024-37-0030
The benefits introduced by the replacement of conventional centrifugal pumps with volumetric machines for Internal Combustion Engines (ICEs) cooling were experimentally and theoretically proven in literature. In particular, Sliding Rotary Vane Pumps (SVRPs) ensure to achieve an interesting reduction of ICEs fuel consumption and CO2 emissions. Despite volumetric pumps are a reference technology for ICE lubrication oil circuits, the application in ICE cooling systems still not represent a ready-to-market solution. Particularly challenging is the case of Heavy-Duty ICE due to the wide operating range the pump covers in terms of flow rate delivered. Generally, SVRPs are designed to operate at high speeds to reduce machine dimensions and, consequently, the weight. Nevertheless, speed increase could lead to a severe penalization of pump performance since the growth of the friction losses.
Technical Paper

Acceleration of Fast-SCR Reactions by Eliminating “The Ammonia Blocking Effect”

2024-06-12
2024-37-0001
The recent and future trends of energy for heavy-duty vehicles are considered e-fuel, H2, and electricity, and the Selective Catalytic Reduction (SCR) system is necessary for achieving the goals of zero-emission internal combustion engines that use e-fuel and H2 as a fuel. The Japanese automotive industry uses a Cu-zeolite based SCR catalyst since Vanadium is designated as a specific chemical substance, which the Ministry of Environment prohibits its release into the atmosphere. This study attempted purification rate improvement by controlling the NH3 supply with a mini-reactor and by simulated exhaust gas. Specifically, the experiment was done by examining the effect of the pulse amplitude, frequency, and duty ratio on the purification rate by supplying the NH3 pulse injection to the test piece Cu-chabazite catalyst. Additionally, the results of the reactor experiment were validated by numerical simulation considering the detailed surface reaction processes on the catalyst.
Technical Paper

Transient Numerical Analysis of a Dissipative Expansion Chamber Muffler

2024-06-12
2024-01-2935
Expansion chamber mufflers are commonly applied to reduce noise in HVAC. Dissipative materials, such as microperforated plates (MPPs), are often applied to achieve a more broadband mitigation effect. Such mufflers are typically characterized in the frequency domain, assuming time-harmonic excitation. From a computational point of view, transient analyses are more challenging. A transformation of the equivalent fluid model or impedance boundary conditions into the time domain induces convolution integrals. We apply the recently proposed finite element formulation of a time domain equivalent fluid (TDEF) model to simulate the transient response of dissipative acoustic media to arbitrary unsteady excitation. As most time domain approaches, the formulation relies on approximating the frequency-dependent equivalent fluid parameters by a sum of rational functions composed of real-valued or complex-conjugated poles.
Technical Paper

Experimental Study of the Acoustics of a Electric Refrigerant Scroll Compressor

2024-06-12
2024-01-2924
In electrified vehicles, auxiliary units can be a dominant source of noise, one of which is the refrigerant scroll compressor. Compared to vehicles with combustion engines, e-vehicles require larger refrigerant compressors, as in addition to the interior, the battery and the electric motors must be cooled. The compressor causes the acoustic excitation of other refrigeration circuit components and the chassis via pressure pulsations and vibration transmission, as well as emitting airborne sound directly. Sound measurements have been performed in an anechoic chamber to investigate the influence of operating conditions on the acoustics of an electric scroll compressor. This paper investigates the influence of the operating conditions on compressor acoustics and shows that rotation speed is the main factor influencing compressor noise. The sound spectra of fluid, structure and airborne noise are dominated by speed-dependent, tonal components.
Technical Paper

Structural Dynamic Modelling of HVAC Systems

2024-06-12
2024-01-2923
The structure-, fluid- and air-borne excitation generated by HVAC compressors can lead to annoying noise and low frequency vibrations in the passenger compartment. These noises and vibrations are of great interest in order to maintain high passenger comfort of EV vehicles. The main objective of this paper is to develop a numerical model of the HVAC system and to simulate the structure-borne sound transmission from the compressor through the HVAC hoses to the vehicle in a frequency range up to 1 kHz. An existing automotive HVAC system was fully replicated in the laboratory. Vibration levels were measured on the compressor and on the car body side of the hoses under different operational conditions. Additional measurements were carried out using external excitation of the compressor in order to distinguish between structure- and fluid-borne transmission. The hoses were experimentally characterised with regard to their structure-borne sound transmission characteristics.
Technical Paper

Analysis of the Mechanism by Which Spline Pitch Errors Affect Powertrain Vibration

2024-06-12
2024-01-2910
As environmental concerns have taken the spotlight, electrified powertrains are rapidly being integrated into vehicles across various brands, boosting their market share. With the increasing adoption of electric vehicles, market demands are growing, and competition is intensifying. This trend has led to stricter standards for noise and vibration as well. To meet these requirements, it is necessary to not only address the inherent noise and vibration sources in electric powertrains, primarily from motors and gearboxes, but also to analyze the impact of the spline power transmission structure on system vibration and noise. Especially crucial is the consideration of manufacturing discrepancies, such as pitch errors in splines, which various studies have highlighted as contributors to noise and vibration in electric powertrains. This paper focuses on comparing and analyzing the influence of spline pitch errors on two layout configurations of motor and gearbox spline coupling structures.
X