Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

The Impact of Die Start-Up Procedure for High Pressure Die Casting

2013-04-08
2013-01-0829
Die pre-heating has a beneficial effect on die life, by reducing thermal shock and stress fluctuations on the die surface. The findings from this paper indicate that the die surface stress decreased by 44% when the die is pre-heated to 150°C, and decreases by 57% when the die is pre-heated to 200°C, in comparison to when the die is started "cold" with an initial temperature of 20°C. Changes to the die start-up procedure, by switching off the die internal water cooling for the first four casting cycles, results in the die heating to operating temperature in fewer casting cycles, resulting in fewer castings being scrapped before the die achieves steady state operating temperature. From this, a saving of four castings per start-up can be made, reducing scrap by 4.5%, leading to lower manufacturing costs, reduced energy usage and increased useful die life.
Journal Article

Analysis of a Shift Quality Metric for a Dual Clutch Transmission

2013-04-08
2013-01-0825
This paper defines the shifting quality evaluation index in detail for DCT (Dual Clutch Transmission) from the perspective of control. The vehicle model for DCT is built using MATLAB / Simulink tools, including the models of driver, load, controller, engine, clutch, transmission (synchronizer), actuators, and vehicle dynamics model. And then a control quality evaluation system is designed. The AHP (Analytic Hierarchy Process) is used to determine weights of the control quality evaluation index and the shifting quality control objectives through the co-simulation of vehicle system model and evaluation system, namely expected control range of each evaluation index, which provides reference and guidance for shifting control strategy and control algorithm of DCT.
Journal Article

Mathematical Analysis of Influence of Oil Temperature on Efficiencies in Hydraulic Pumps for Automatic Transmissions

2013-04-08
2013-01-0820
This paper deals with a mathematical analysis of pump efficiencies in an internal gear and balanced vane pumps. They are commonly used in current automatic transmissions including a continuously variable transmission. For these pumps, the influence of oil temperature as well as pump-operating pressures and pump speeds is clarified by using mathematical models taking oil temperature into consideration, which are constructed on the basis of actual measured flow and torque data under various pump-operating conditions. For fuel economy in a vehicle, because the pump should be operated under conditions to obtain higher pump efficiencies, it is very important to understand the relationship between the pump efficiencies and the pump-operating conditions.
Journal Article

Experimental Characterization and Modeling of Dry Dual Clutch Thermal Expansion Effects

2013-04-08
2013-01-0818
Thermal expansion of a clutch pack with position-controlled actuation can affect the accuracy of clutch normal torque control, because it causes an increase of the clutch normal force for the given actuator position. The paper presents an experimental characterization and mathematical modeling of the dry dual clutch thermal expansion effects. The experimental data have been collected by using a clutch/transmission test rig. The acquired data point to two separate, mutually opposite thermal expansion effects. The first effect relates to increase of the clutch clearance with temperature growth, while the second one includes decrease of press plate and engagement bearing positions for a given clutch torque and a rising temperature (i.e. the clutch torque rises with temperature growth and a constant actuator position). In order to explain and describe these two effects, a geometry analysis of the clutch, focused on thermal expansion, is carried out.
Journal Article

Active Thermal Management with a Dual Mode Coolant Pump

2013-04-08
2013-01-0849
A GT-suite commercial code was used to develop a fully integrated model of a light duty commercial vehicle with a V6 diesel engine, to study the use of a BorgWarner dual mode coolant pump (DMCP) in active thermal management of the vehicle. An Urban Dynamometer Driving Schedule (UDDS) was used to validate the simulation results with the experimental data. The conventional mechanical pump from the validated model was then replaced with the dual mode coolant pump. The control algorithm for the pump was based on controlling the coolant temperature with pump speed. Maximum electrical speed of the pump and the efficiency of the pump were used to determine whether the pump should run in mechanical or electrical mode. The model with the dual mode coolant pump was simulated for the UDDS cycle to demonstrate the effectiveness of control strategy.
Journal Article

The Influence of Crevices on Hydrocarbon Emissions from a Diesel-Methane Dual Fuel Engine

2013-04-08
2013-01-0848
Emissions of unburned methane are the Achilles heel of premixed gas engines whether they are spark ignited or diesel pilot ignited. If the engine is operated lean, lower temperatures prevail in the combustion chamber and several of the mechanisms behind the hydrocarbon emissions are aggravated. This paper presents an experimental investigation of the contribution from combustion chamber crevices and quenching to the total hydrocarbon emissions from a diesel-methane dual fuel engine at different operating conditions and air excess ratios. It is shown that the sensitivity to a change in topland crevice volume is greater at lean conditions than at stoichiometry. More than 70% of hydrocarbon emissions at air excess ratios relevant to operation of lean burn engines can be attributed to crevices.
Journal Article

Numerical Investigation of Buoyancy-Driven Flow in a Simplified Underhood with Open Enclosure

2013-04-08
2013-01-0842
Numerical results are presented for simulating buoyancy driven flow in a simplified full-scale underhood with open enclosure in automobile. The flow condition is set up in such a way that it mimics the underhood soak condition, when the vehicle is parked in a windbreak with power shut-down after enduring high thermal loads due to performing a sequence of operating conditions, such as highway driving and trailer-grade loads in a hot ambient environment. The experimental underhood geometry, although simplified, consists of the essential components in a typical automobile underhood undergoing the buoyancy-driven flow condition. It includes an open enclosure which has openings to the surrounding environment from the ground and through the top hood gap, an engine block and two exhaust cylinders mounted along the sides of the engine block. The calculated temperature and velocity were compared with the measured data at different locations near and away from the hot exhaust plumes.
Journal Article

Using IAC Database for Longitudinal Study of Small to Medium Sized Automotive Industry Suppliers' Energy Intensity Changes

2013-04-08
2013-01-0833
Industries related to automotive manufacturing and its supply chain play a key role in leaving a carbon footprint during an automobile's life cycle. Per the report from Lawrence Berkeley National Laboratory (LBNL) in March, 2008 [1], “motor vehicle industry in the U.S. spends about $3.6 billion on energy annually.” The proposed research will focus on energy savings opportunities in automotive manufacturing and its supplier network. The US Department of Energy (DOE) funds 24 Industrial Assessment Centers (IAC) throughout the U.S. that conduct energy assessments at many of these facilities. The results of these assessments are summarized in a database maintained by Rutgers University which acts as the central management body for all the IACs. This research will present key concepts summarized from this database.
Journal Article

A New Computational Tool for Automotive Cabin Air Temperature Simulation

2013-04-08
2013-01-0868
The thermal comfort inside automotive cabin has been extensively studied for decades. Traditional CFD models provide accurate simulation results of the air temperature distributions inside cabins but at a relatively high computation cost. In order to reduce the computational cost while still providing reasonable accuracy in simulating the air temperature profile inside a mid-sized sedan cabin, this paper introduces a new simulation tool that utilizes a proper orthogonal decomposition (POD) method. The POD method, an interpolation technique, requires only one set of multiple CFD simulations to produce a set of “snapshots”. Later, any simulations that require CFD runs to solve algorithm equation sets can be simplified by using interpolation between the snapshots provided that the geometry of the cabin keeps the same. As a result, the computation time can be reduced to only a few minutes.
Journal Article

A Multi-Dimensional CFD-Chemical Kinetics Approach in Detection and Reduction of Knocking Combustion in Diesel-Natural Gas Dual-Fuel Engines Using Local Heat Release Analysis

2013-04-08
2013-01-0865
Dual-fuel diesel-natural gas (NG) engine exhibits higher power density and lower specific emissions compared to dedicated diesel engines. However, high intake temperatures, high compression ratios, combined with high engine loads may lead to engine knock. This is potentially a limiting factor on engine downsizing and getting higher power. In the present study, the combustion process under knocking conditions has been investigated in a dual-fuel diesel-NG engine. A comprehensive multi-dimensional simulation framework was generated by integrating the CHEMKIN chemistry solver into the KIVA-3V code. A detailed chemical kinetics mechanism was used for n-heptane and methane as diesel and NG surrogates. Combination of detailed chemical kinetics and detailed fluid dynamics calculation enabled the model to take into account the characteristics of most pronounced knock type in dual-fuel engines, so called end-gas knock.
Journal Article

Organic Rankine Cycles with Dry Fluids for Small Engine Exhaust Waste Heat Recovery

2013-04-08
2013-01-0878
Engine manufacturers are considering the implementation of thermodynamic cycles for Waste Heat Recovery (WHR) in order to increase Internal Combustion Engine (ICE) system thermal efficiency. For these secondary cycles, the literature illustrates the preference of Organic Rankine Cycles (ORC's) due to its simplicity and efficient recovery of the medium grade waste heat found in engine exhaust. This paper simulates the heat recovery capacity of eight dry fluids (butane, pentane, hexane, cyclopentane, benzene, toluene, R245fa, and R123) for an ORC based on the exhaust from a single-cylinder diesel engine-generator operating under five different loading conditions. The model, developed using REFPROP and the Matlab Optimization Toolbox, represents the physical components using isentropic pump and expander efficiencies, along with two-zone heat exchangers. All fluids present cycle efficiencies between 10-15%, with the heaviest hydrocarbons generating the largest amount of work.
Journal Article

The Development of Exhaust Surface Temperature Models for 3D CFD Vehicle Thermal Management Simulations Part 1 - General Exhaust Configurations

2013-04-08
2013-01-0879
The thermal prediction of a vehicle under-body environment is of high importance in the design, optimization and management of vehicle power systems. Within the pre-development phase of a vehicle's production process, it is important to understand and determine regions of high thermally induced stress within critical under-body components. Therefore allowing engineers to modify the design or alter component material characteristics before the manufacture of hardware. As the exhaust system is one of the primary heat sources in a vehicle's under-body environment, it is vital to predict the thermal fluctuation of surface temperatures along corresponding exhaust components in order to achieve the correct thermal representation of the overall under-body heat transfer. This paper explores a new method for achieving higher accuracy exhaust surface temperature predictions.
Journal Article

A New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink

2013-04-08
2013-01-0850
Accurate evaluation of vehicles' transient total power requirement helps achieving further improvements in vehicle fuel efficiency. When operated, the air-conditioning (A/C) system is the largest auxiliary load on a vehicle, therefore accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation models, such as "Autonomie," have been used by OEMs to evaluate vehicles' energy performance. However, the load from the A/C system on the engine or on the energy storage system has not always been modeled in sufficient detail. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic system simulation software MATLAB/Simulink® is frequently used by vehicle controls engineers to develop new and more efficient vehicle energy system controls.
Journal Article

Design of Efficient Air-Conditioning Systems for Electric Vehicles

2013-04-08
2013-01-0864
Among all the auxiliary components in conventional and electric vehicles, air-conditioning (AC) systems present the highest energy consumption. In fully electrical vehicles (FEVs), the heating of the cabin becomes an additional challenge as there is less waste heat available. Therefore, a careful design of the air-conditioning system and of the operation strategies is necessary to reach a reasonable FEV autonomy without compromising the thermal comfort. This paper presents a tool for the design, analysis and optimization of an efficient air-conditioning system for an electric minibus. It consists of dynamic models of each component of the system that have been developed and fully validated individually. Finally, they have been coupled together to simulate the overall vehicle performance of the vehicle in MATLAB-SIMULINK. The core of the system is a water-to-water reversible heat pump with a variable speed compressor.
Journal Article

Thermodynamic Analysis of a Novel Combined Power and Cooling Cycle Driven by the Exhaust Heat Form a Diesel Engine

2013-04-08
2013-01-0858
A novel combined power and cooling cycle based on the Organic Rankine Cycle (ORC) and the Compression Refrigeration Cycle (CRC) is proposed. The cycle can be driven by the exhaust heat from a diesel engine. In this combined cycle, ORC will translate the exhaust heat into power, and drive the compressor of CRC. The prime advantage of the combined cycle is that both the ORC and CRC are trans-critical cycles, and using CO₂ as working fluid. Natural, cheap, environmentally friendly, nontoxic and good heat transfer properties are some advantages of CO₂ as working fluid. In this paper, besides the basic combined cycle (ORC-CRC), another three novel cycles: ORC-CRC with an expander (ORC-CRCE), ORC with an internal heat exchanger as heat accumulator combined with CRC (ORCI-CRC), ORCI-CRCE, are analyzed and compared.
Journal Article

Studies on the Impact of 300 MPa Injection Pressure on Engine Performance, Gaseous and Particulate Emissions

2013-04-08
2013-01-0897
An investigation has been carried out to examine the influence of up to 300 MPa injection pressure on engine performance and emissions. Experiments were performed on a 4 cylinder, 4 valve / cylinder, 4.5 liter John Deere diesel engine using the Ricardo Twin Vortex Combustion System (TVCS). The study was conducted by varying the injection pressure, Start of Injection (SOI), Variable Geometry Turbine (VGT) vane position and a wide range of EGR rates covering engine out NOx levels between 0.3 g/kWh to 2.5 g/kWh. A structured Design of Experiment approach was used to set up the experiments, develop empirical models and predict the optimum results for a range of different scenarios. Substantial fuel consumption benefits were found at the lowest NOx levels using 300 MPa injection pressure. At higher NOx levels the impact was nonexistent. In a separate investigation a Cambustion DMS-500 fast particle spectrometer, was used to sample and analyze the exhaust gas.
Journal Article

Study of Soot Formation and Oxidation in the Engine Combustion Network (ECN), Spray A: Effects of Ambient Temperature and Oxygen Concentration

2013-04-08
2013-01-0901
Within the Engine Combustion Network (ECN) spray combustion research frame, simultaneous line-of-sight laser extinction measurements and laser-induced incandescence (LII) imaging were performed to derive the soot volume fraction (fv). Experiments are conducted at engine-relevant high-temperature and high-pressure conditions in a constant-volume pre-combustion type vessel. The target condition, called "Spray A," uses well-defined ambient (900 K, 60 bar, 22.8 kg/m₃, 15% oxygen) and injector conditions (common rail, 1500 bar, KS1.5/86 nozzle, 0.090 mm orifice diameter, n-dodecane, 363 K). Extinction measurements are used to calibrate LII images for quantitative soot distribution measurements at cross sections intersecting the spray axis. LII images are taken after the start of injection where quasi-stationary combustion is already established.
Journal Article

Comparison of Negative Valve Overlap (NVO) and Rebreathing Valve Strategies on a Gasoline PPC Engine at Low Load and Idle Operating Conditions

2013-04-08
2013-01-0902
Gasoline partially premixed combustion (PPC) has the potential of high efficiency and simultaneous low soot and NOx emissions. Running the engine in PPC mode with high octane number fuels has the advantage of a longer premix period of fuel and air which reduces soot emissions. The problem is the ignitability at low load and idle operating conditions. In a previous study it was shown that it is possible to use NVO to improve combustion stability and combustion efficiency at operating conditions where available boosted air is assumed to be limited. NVO has the disadvantage of low net indicated efficiency due to heat losses from recompressions of the hot residual gases. An alternative to NVO is the rebreathing valve strategy where the exhaust valves are reopened during the intake stroke. The net indicated efficiency is expected to be higher with the rebreathing strategy but the question is if similar improvements in combustion stability can be achieved with rebreathing as with NVO.
Journal Article

Optical Investigation of the Reduction of Unburned Hydrocarbons Using Close-Coupled Post Injections at LTC Conditions in a Heavy-Duty Diesel Engine

2013-04-08
2013-01-0910
Partially premixed low-temperature combustion (LTC) using exhaust-gas recirculation (EGR) has the potential to reduce engine-out NOx and soot emissions, but increased unburned hydrocarbon (UHC) emissions need to be addressed. In this study, we investigate close-coupled post injections for reducing UHC emissions. By injecting small amounts of fuel soon after the end of the main injection, fuel-lean mixtures near the injector that suffer incomplete combustion can be enriched with post-injection fuel and burned to completion. The goal of this work is to understand the in-cylinder mechanisms affecting the post-injection efficacy and to quantify its sensitivity to operational parameters including post-injection duration, injection dwell, load, and ignition delay time of the post-injection mixture.
Journal Article

Boost System Development for Gasoline Direct-Injection Compression-Ignition (GDCI)

2013-04-08
2013-01-0928
Intake boosting is an important method to improve fuel economy of internal combustion engines. Engines can be down-sized, down-speeded, and up-loaded to reduce friction losses, parasitic losses, and pumping losses, and operate at speed-load conditions that are thermodynamically more efficient. Low-temperature combustion engines (LTE) also benefit from down-sizing, down-speeding, and up-loading, but these engines exhibit very low exhaust enthalpy to drive conventional turbochargers. This paper describes modeling, evaluation, and selection of an efficient boost system for a 1.8L four-cylinder Gasoline Direct-Injection Compression-Ignition (GDCI) engine. After a preliminary concept selection phase the model was used to develop the boost system parameters to achieve full-load and part-load engine operation objectives.
X