Refine Your Search

Topic

Search Results

Viewing 1 to 2 of 2
Technical Paper

Challenges in Integrating Cybersecurity into Existing Development Processes

2020-04-14
2020-01-0144
Strategies designed to deal with these challenges differ in the way in which added duties are assigned and cybersecurity topics are integrated into the already existing process steps. Cybersecurity requirements often clash with existing system requirements or established development methods, leading to low acceptance among developers, and introducing the need to have clear policies on how friction between cybersecurity and other fields is handled. ...Cybersecurity requirements often clash with existing system requirements or established development methods, leading to low acceptance among developers, and introducing the need to have clear policies on how friction between cybersecurity and other fields is handled. A cybersecurity development approach is frequently perceived as introducing impediments, that bear the risk of cybersecurity measures receiving a lower priority to reduce inconvenience. ...For an established development process and a team accustomed to this process, adding cybersecurity features to the product initially means inconvenience and reduced productivity without perceivable benefits.
Technical Paper

Onboard Cybersecurity Diagnostic System for Connected Vehicles

2021-09-21
2021-01-1249
Here, we discuss the On-Board Diagnostic (OBD) regulations for next generation BEV/HEV, its vulnerabilities and cybersecurity threats that come with hacking. We propose three cybersecurity attack detection and defense methods: Cyber-Attack detection algorithm, Time-Based CAN Intrusion Detection Method and, Feistel Cipher Block Method. ...These control methods autonomously diagnose a cybersecurity problem in a vehicle’s onboard system using an OBD interface, such as OBD-II when a fault caused by a cyberattack is detected, All of this is achieved in an internal communication network structure.
Journal Article

Cybersecurity Vulnerabilities for Off-Board Commercial Vehicle Diagnostics

2023-04-11
2023-01-0040
The lack of inherent security controls makes traditional Controller Area Network (CAN) buses vulnerable to Machine-In-The-Middle (MitM) cybersecurity attacks. Conventional vehicular MitM attacks involve tampering with the hardware to directly manipulate CAN bus traffic.
Technical Paper

Enhanced Penetration Testing for Automotive Cybersecurity

2022-12-16
2022-01-7123
Automotive electronics and enterprise IT are converging and thus open the doors for advanced hacking. With their immediate safety impact, cyberattacks on such systems will endanger passengers. Today, there are various methods of security verification and validation in the automotive industry. However, we realize that vulnerability detection is incomplete and inefficient with classic security testing. In this article, we show how an enhanced Grey-Box Penetration Test (GBPT) needs less test cases while being more effective in terms of coverage and indicating less false positives.
Technical Paper

Common Vulnerability Considerations as an Integral Part of the Automotive Cybersecurity Engineering Process

2022-10-05
2022-28-0304
To build secure systems of road vehicles, the cybersecurity engineering standard ISO21434[11] suggests the evaluation of vulnerabilities throughout engineering process, such as attack path analysis, system requirement stage, software architecture, design, and implementation and testing phases. ...With my analysis and practices, it is appropriate to include the common vulnerabilities that ought to be an integral part of the automotive cybersecurity engineering process. In this paper, the author would like to provide a list of vulnerabilities that might be a suggestion for threat analysis and risk assessment and propose two solutions that may be adopted directly in the V-model for security-relevant software development.
Technical Paper

Challenges with the Introduction of X-By-Wire Technologies to Passenger Vehicles and Light Trucks in regards to Functional Safety, Cybersecurity and Availability

2023-04-11
2023-01-0581
Classic vehicle production had limitations in bringing the driving commands to the actuators for vehicle motion (engine, steering and braking). Steering columns, hydraulic tubes or steel cables needed to be placed between the driver and actuator. Change began with the introduction of e-gas systems. Mechanical cables were replaced by thin, electric signal wires. The technical solutions and legal standardizations for addressing the steering and braking systems, were not defined at this time. Today, OEMs are starting E/E-Architecture transformations for manifold reasons and now have the chance to remove the long hydraulic tubes for braking and the solid metal columns used for steering. X-by-wire is the way forward and allows for higher Autonomous Driving (AD) levels for automated driving vehicles. This offers new opportunities to design the vehicle in-cabin space. This paper will start with the introduction of x-by-wire technologies.
Technical Paper

A Zero Trust Architecture for Automotive Networks

2024-04-09
2024-01-2793
Since the early 1990’s, commercial vehicles have suffered from repeated vulnerability exploitations that resulted in a need for improved automotive cybersecurity. This paper outlines the strategies and challenges of implementing an automotive Zero Trust Architecture (ZTA) to secure intra-vehicle networks. ...This research successfully met the four requirements and demonstrated that using ZT principles in an on-vehicle network greatly improved the cybersecurity posture with manageable impact to system performance and deployment.
Research Report

Impact of Electric Vehicle Charging on Grid Energy Buffering

2022-09-26
EPR2022022
Impact of Electric Vehicle Charging on Grid Energy Buffering discusses the unsettled issues and requirements needed to realize the potential of EV batteries for demand response and grid services, such as improved battery management, control strategies, and enhanced cybersecurity. Hybrid and fuel cell EVs have significant potential to act as “peakers” for longer duration buffering, and this approach has the potential to provide all the long-term energy buffering required by a VRE-intensive grid.
Technical Paper

Intelligent Vehicle Monitoring for Safety and Security

2019-04-02
2019-01-0129
The caveat to these additional capabilities is issues like cybersecurity, complexity, etc. This paper is an exploration into FuSa and CAVs and will present a systematic approach to understand challenges and propose potential framework, Intelligent Vehicle Monitoring for Safety and Security (IVMSS) to handle faults/malfunctions in CAVs, and specifically autonomous systems.
Technical Paper

Scalable Decentralized Solution for Secure Vehicle-to-Vehicle Communication

2020-04-14
2020-01-0724
The automotive industry is set for a rapid transformation in the next few years in terms of communication. The kind of growth the automotive industry is poised for in fields of connected cars is both fascinating and alarming at the same time. The communication devices equipped to the cars and the data exchanges done between vehicles to vehicles are prone to a lot of cyber-related attacks. The signals that are sent using Vehicular Adhoc Network (VANET) between vehicles can be eavesdropped by the attackers and it may be used for various attacks such as the man in the middle attack, DOS attack, Sybil attack, etc. These attacks can be prevented using the Blockchain technology, where each transaction is logged in a decentralized immutable Blockchain ledger. This provides authenticity and integrity to the signals. But the use of Blockchain Platforms such as Ethereum has various drawbacks like scalability which makes it infeasible for connected car system.
Technical Paper

Communication Requirements for Plug-In Electric Vehicles

2011-04-12
2011-01-0866
This paper is the second in the series of documents designed to record the progress of a series of SAE documents - SAE J2836™, J2847, J2931, & J2953 - within the Plug-In Electric Vehicle (PEV) Communication Task Force. This follows the initial paper number 2010-01-0837, and continues with the test and modeling of the various PLC types for utility programs described in J2836/1™ & J2847/1. This also extends the communication to an off-board charger, described in J2836/2™ & J2847/2 and includes reverse energy flow described in J2836/3™ and J2847/3. The initial versions of J2836/1™ and J2847/1 were published early 2010. J2847/1 has now been re-opened to include updates from comments from the National Institute of Standards Technology (NIST) Smart Grid Interoperability Panel (SGIP), Smart Grid Architectural Committee (SGAC) and Cyber Security Working Group committee (SCWG).
Journal Article

Ensuring Fuel Economy Performance of Commercial Vehicle Fleets Using Blockchain Technology

2019-04-02
2019-01-1078
In the past, research on blockchain technology has addressed security and privacy concerns within intelligent transportation systems for critical V2I and V2V communications that form the backbone of Internet of Vehicles. Within trucking industry, a recent trend has been observed towards the use of blockchain technology for operations. Industry stakeholders are particularly looking forward to refining status quo contract management and vehicle maintenance processes through blockchains. However, the use of blockchain technology for enhancing vehicle performance in fleets, especially while considering the fact that modern-day intelligent vehicles are prone to cyber security threats, is an area that has attracted less attention. In this paper, we demonstrate a case study that makes use of blockchains to securely optimize the fuel economy of fleets that do package pickup and delivery (P&D) in urban areas.
X