Refine Your Search

Topic

Search Results

Event

AeroTech® Digital Summit

2024-04-29
New for 2022, AeroTech® will deliver even more robust programming by teaming up with AeroMat to deliver learning opportunities dedicated to: Additive Manufacturing and Materials, Environment and Sustainable Aviation (Sustainability), Autonomy and AI, Safety and Human Factors, Modeling, Simulation and Testing, Cybersecurity / Cyber-Physical Security, Industry 4.0 Smart Manufacturing and Assembly, IDEAL Summit (inclusion, diversity, equity, accessibility and leadership), Advanced Air Mobility (AAM) and Multimodal Mobility (M3)
Event

AeroTech®

2024-04-29
New for 2022, AeroTech® will deliver even more robust programming by teaming up with AeroMat to deliver learning opportunities dedicated to: Additive Manufacturing and Materials, Environment and Sustainable Aviation (Sustainability), Autonomy and AI, Safety and Human Factors, Modeling, Simulation and Testing, Cybersecurity / Cyber-Physical Security, Industry 4.0 Smart Manufacturing and Assembly, IDEAL Summit (inclusion, diversity, equity, accessibility and leadership), Advanced Air Mobility (AAM) and Multimodal Mobility (M3)
Event

AeroTech® Volunteer Resources

2024-04-29
New for 2022, AeroTech® will deliver even more robust programming by teaming up with AeroMat to deliver learning opportunities dedicated to: Additive Manufacturing and Materials, Environment and Sustainable Aviation (Sustainability), Autonomy and AI, Safety and Human Factors, Modeling, Simulation and Testing, Cybersecurity / Cyber-Physical Security, Industry 4.0 Smart Manufacturing and Assembly, IDEAL Summit (inclusion, diversity, equity, accessibility and leadership), Advanced Air Mobility (AAM) and Multimodal Mobility (M3)
Event

Attend - AeroTech®

2024-04-29
New for 2022, AeroTech® will deliver even more robust programming by teaming up with AeroMat to deliver learning opportunities dedicated to: Additive Manufacturing and Materials, Environment and Sustainable Aviation (Sustainability), Autonomy and AI, Safety and Human Factors, Modeling, Simulation and Testing, Cybersecurity / Cyber-Physical Security, Industry 4.0 Smart Manufacturing and Assembly, IDEAL Summit (inclusion, diversity, equity, accessibility and leadership), Advanced Air Mobility (AAM) and Multimodal Mobility (M3)
Journal Article

Using Delphi and System Dynamics for IoT Cybersecurity: Preliminary Airport Implications

2021-03-02
2021-01-0019
Day by day, airports adopt more IoT devices. However, airports are not exempt from possible failures due to malware’s proliferation that can abuse vulnerabilities. Computer criminals can access, corrupt, and extract information from individuals or companies. This paper explains the development of a propagation model, which started with a Delphi process. We discuss the preliminary implications for airports of the simulation model built from the Delphi recommendations.
Event

2024-04-29
Standard

Determination of Cost Benefits from Implementing a Blockchain Solution

2021-08-19
CURRENT
ARP6984
This SAE Aerospace Recommended Practice (ARP) provides insights on how to perform a Cost Benefit Analysis (CBA) to determine the Return on Investment (ROI) that would result from implementing a blockchain solution to a new or an existing business process. The word “blockchain” refers to a method of documenting when data transactions occur using a distributed ledger with desired immutable qualities. The scope of the current document is on enterprise blockchain which gives the benefit of standardized cryptography, legal enforceability and regulatory compliance. The document analyzes the complexity involved with this technology, lists some of the different approaches that can be used for conducting a CBA, and differentiates its analysis depending on whether the application uses a public or a private distributed network.
Journal Article

Threat Identification and Defense Control Selection for Embedded Systems

2020-08-18
Abstract Threat identification and security analysis have become mandatory steps in the engineering design process of high-assurance systems, where successful cyberattacks can lead to hazardous property damage or loss of lives. This article describes a novel approach to perform security analysis on embedded systems modeled at the architectural level. The tool, called Security Threat Evaluation and Mitigation (STEM), associates threats from the Common Attack Pattern Enumeration and Classification (CAPEC) library with components and connections and suggests potential defense patterns from the National Institute of Standards and Technology (NIST) Special Publication (SP) 800-53 security standard. This article also provides an illustrative example based on a drone package delivery system modeled in AADL.
Standard

Deliverable Aerospace Software Supplement for AS9100A Quality Management Systems - Aerospace - Requirements for Software (based on AS9100A)

2003-03-12
HISTORICAL
AS9006
The basic requirements of AS9100A apply with the following clarifications. This document supplements the requirements of AS9100A for deliverable software. This supplement contains Quality System requirements for suppliers of products that contain deliverable embedded or loadable airborne, spaceborne or ground support software components that are part of an aircraft Type Design, weapon system, missile or spacecraft operational software and/or support software that is used in the development and maintenance of deliverable software. This includes the host operating system software including assemblers, compilers, linkers, loaders, editors, code generators, analyzers, ground simulators and trainers, flight test data reduction, etc., that directly support creation, test and maintenance of the deliverable software.
Standard

NATIONAL AEROSPACE AND DEFENSE CONTRACTORS ACCREDITATION PROGRAM (NADCAP) REQUIREMENTS FOR ACCREDITATION OF PASS THROUGH DISTRIBUTORS

1993-06-24
HISTORICAL
AS7103
This aerospace standard outlines the minimum requirements for the quality assurance program of a distributor of new aircraft or aerospace parts and material. It is designed to aid in the surveillance and accreditation of a distributor who procures new parts and materials and resells these products to customers or other distributors in the aviation or aerospace industry, i.e., a PASS THROUGH distributor. This standard may be used to determine the adequacy and implementation of the distributor’s quality assurance program.
Standard

Unmanned Systems (UxS) Control Segment (UCS) Architecture: Architecture Description

2020-07-14
HISTORICAL
AS6512A
This document is the Architecture Description (AD) for the SAE Unmanned Systems (UxS) Control Segment (UCS) Architecture Library Revision A or, simply, the UCS Architecture. The architecture is expressed by a library of SAE publications as referenced herein. The other publications in the UCS Architecture Library Revision A are: AS6513A, AS6518A, AS6522A, and AS6969A.
Standard

Processes for Application-Specific Qualification of Electrical, Electronic, and Electromechanical Parts and Sub-Assemblies for Use in Aerospace, Defense, and High Performance Systems

2022-05-19
WIP
ARP6379A
This document describes a process for use by ADHP integrators of EEE parts and sub-assemblies (items) that have been targeted for other applications. This document does not describe specific tests to be conducted, sample sizes to be used, nor results to be obtained; instead, it describes a process to define and accomplish application-specific qualification; that provides confidence to both the ADHP integrators, and the integrators’ customers, that the item will performs its function(s) reliably in the ADHP application.
Standard

Standard Best Practices for System Safety Program Development and Execution

2018-11-19
WIP
GEIASTD0010B
This document outlines a standard practice for conducting system safety. In some cases, these principles may be captured in other standards that apply to specific commodities such as commercial aircraft and automobiles. For example, those manufacturers that produce commercial aircraft should use SAE ARP4754 or SAE ARP4761 (see Section 2 below) to meet FAA or other regulatory agency system safety-related requirements. The system safety practice as defined herein provides a consistent means of evaluating identified risks. Mishap risk should be identified, evaluated, and mitigated to a level as low as reasonably practicable. The mishap risk should be accepted by the appropriate authority and comply with federal (and state, where applicable) laws and regulations, executive orders, treaties, and agreements. Program trade studies associated with mitigating mishap risk should consider total life cycle cost in any decision.
Magazine

Aerospace & Defense Technology: February 2024

2024-02-08
Certified Machine Learning-Based Avionics: Unlocking Safer Revolutionizing Electronic Warfare: Unleashing the Power of High-Performance Software Defined Radios Deterministic and Modular Architecture for Embedded Vehicle Systems Approximating the Material Stresses and System Requirements for Hypersonic Flight Design Approaches for Established and Emerging RF Receiver Architectures Rydberg Technologies Shows Potential of Long-Range RF with Quantum Sensor at NetModX23 New Method to Measure Wind Speed Could Unlock Drones' Potential A fundamentally different approach to wind estimation using unmanned aircraft than the vast majority of existing methods. This method uses no on-board flow sensor and does not attempt to estimate thrust or drag forces. Report on Human Factors Issues Likely to Affect Air-Launched Effects This report reviews human factors research on the supervision of multiple unmanned vehicles (UVs) as it affects human integration with Air-Launched Effects (ALE).
Article

New university-led Air Force Center of Excellence focuses on securing autonomous systems operating in contested environments

2019-05-22
The researchers at the COE for Assured Autonomy in Contested Environments – all of which histories of innovation for Department of Defense problems of interest – will focus on the availability, integrity, and effective use of information by leveraging its diverse expertise in dynamics, mathematics, control theory, information theory, communications, and computer science.
Article

Nvidia partners with AdaCore to secure self-driving firmware

2019-02-14
As mobility software becomes increasingly complex and connected, so does the risk of human error and system safety. To combat this, New York-based software company AdaCore will work with Nvidia Corporation of Santa Clara, California to apply open-source Ada and SPARK programming languages for select software security firmware elements in highly-complex, safety-critical systems like Nvidia’s DRIVE AGX automated and autonomous vehicle solutions.
X