Refine Your Search

Topic

Search Results

Training / Education

Cybersecurity in the Energy Sector

Anytime
Anatomy and examples of cyberattacks on industrial control systems (ICS) and critical infrastructures (CI): In this course you will understand the importance of cybersecurity for Critical Infrastructure and you will know typical attack vectors, vulnerabilities and defense strategies. ...Decentralized Energy Systems Security: In this course you will know relevant technical countermeasures for cybersecurity. You will understand threats and solutions concerning data communication and network security in the energy systems.
Technical Paper

Challenges in Integrating Cybersecurity into Existing Development Processes

2020-04-14
2020-01-0144
Strategies designed to deal with these challenges differ in the way in which added duties are assigned and cybersecurity topics are integrated into the already existing process steps. Cybersecurity requirements often clash with existing system requirements or established development methods, leading to low acceptance among developers, and introducing the need to have clear policies on how friction between cybersecurity and other fields is handled. ...Cybersecurity requirements often clash with existing system requirements or established development methods, leading to low acceptance among developers, and introducing the need to have clear policies on how friction between cybersecurity and other fields is handled. A cybersecurity development approach is frequently perceived as introducing impediments, that bear the risk of cybersecurity measures receiving a lower priority to reduce inconvenience. ...For an established development process and a team accustomed to this process, adding cybersecurity features to the product initially means inconvenience and reduced productivity without perceivable benefits.
Standard

CAN FD Data Link Layer

2022-09-08
CURRENT
J1939-22_202209
The flexible data rate capability in CAN (commonly called CAN FD) is implemented as a transport layer in order to allow for functional safety, cybersecurity, extended transport capability, and backward compatibility with SAE J1939DA.
Magazine

SAE Truck & Off-Highway Engineering: October 2018

2018-10-01
Quotes from COMVEC 2018 Industry leaders spoke extensively about all things autonomous-ADAS, big data, connectivity, cybersecurity, machine learning-at the annual SAE event. Here's some of what they had to say. Fuel-cell Class 8-take 2.0 With a longer-range and more-refined fuel cell-powered heavy-duty truck, Toyota aims to eventually eliminate emissions from trucks serving increasingly congested California ports. ...Editorial Bring innovation, disruption in-house Adding 3D printing to design, manufacturing processes Upstream devoted to truck cybersecurity threats Jacobs employs cylinder deactivation in HD engines to lower CO2, NOx Emissions reductions continue to disrupt CV industry Mercedes doubles down on electric vans and buses, considers fuel cells Off-road bus from Torsus transports to hard-to-reach places Q&A Perkins pursues plug-and-play connectivity
Magazine

MOBILITY ENGINEERING: September 2017

2017-09-01
Connected commercial vehicles bring cybersecurity to the fore Connectivity, automation and electrification will drive vehicle development in the near future, say industry experts attending the revamped SAE COMVEC 17 event.
Magazine

Automotive Engineering: July 7, 2015

2015-07-07
To serve and protect As cars become more connected and automated, cybersecurity concerns are rising. Industry engineers have many tools and techniques and are now deploying encryption and standards to ensure that vehicle controls are not altered or usurped by unauthorized people.
Magazine

SAE Truck & Off-Highway Engineering: October 2021

2021-10-07
Defending the heavy-vehicle cyber domain Cybersecurity experts explained at SAE COMVEC 2021 how they're preparing the next generation of thwarters to protect increasingly electrified, connected and automated trucks.
Technical Paper

Applying Concolic Testing to the Automotive Domain

2024-04-09
2024-01-2802
Symbolic code execution is a powerful cybersecurity testing approach that facilitates the systematic exploration of all paths within a program to uncover previously unknown cybersecurity vulnerabilities. ...Symbolic code execution is a powerful cybersecurity testing approach that facilitates the systematic exploration of all paths within a program to uncover previously unknown cybersecurity vulnerabilities. This is achieved through a Satisfiability Modulo Theory (SMT) solver, which operates on symbolic values for program inputs instead of using their concrete counterparts.
Magazine

SAE Truck & Off-Highway Engineering: August 2017

2017-08-03
Connected commercial vehicles bring cybersecurity to the fore Connectivity, automation and electrification will largely drive vehicle developments in the coming years, according to experts presenting at the revamped SAE COMVEC 17.
Standard

CAN FD Data Link Layer

2021-03-22
HISTORICAL
J1939-22_202103
The flexible data rate capability in CAN (commonly called CAN FD) is implemented as a transport layer in order to allow for functional safety, cybersecurity, extended transport capability, and backward compatibility with SAE J1939DA.
Standard

CAN FD Data Link Layer

2021-07-16
HISTORICAL
J1939-22_202107
The flexible data rate capability in CAN (commonly called CAN FD) is implemented as a transport layer in order to allow for functional safety, cybersecurity, extended transport capability, and backward compatibility with SAE J1939DA.

SAE EDGE™ Research Reports - Publications

2024-04-30
SAE EDGE Research Reports provide examinations significant topics facing mobility industry today including Connected Automated Vehicle Technologies Electrification Advanced Manufacturing
Standard

Security Specification through the Systems Engineering Process for SAE V2X Standards

2020-10-10
CURRENT
SS_V2X_001
This document addresses the development of security material for application specifications in SAE V2X Technical Committees. The assumption in this document is that two groups with distinct missions contribute to the development of each standard: the “Application Specification Team is in charge of specifying the application functionality and the “Security Specification Team” is in charge of specifying the security. The two teams may, of course, have a significant overlap of members.
Standard

Service Specific Permissions and Security Guidelines for Connected Vehicle Applications

2020-02-05
CURRENT
J2945/5_202002
SAE is developing a number of standards, including the SAE J2945/x and SAE J3161/x series, that specify a set of applications using message sets from the SAE J2735 data dictionary. (“Application” is used here to mean “a collection of activities including interactions between different entities in the service of a collection of related goals and associated with a given IEEE Provider Service Identifier (PSID)”). Authenticity and integrity of the communications for these applications are ensured using digital signatures and IEEE 1609.2 digital certificates, which also indicate the permissions of the senders using Provider Service Identifiers (PSIDs) and Service Specific Permissions (SSPs). The PSID is a globally unique identifier associated with an application specification that unambiguously describes how to build interoperable instances of that application.
Training / Education

Intelligent Vehicles From Functional Framework to Vehicle Architecture

This course provides an overview of state-of-the-art intelligent vehicles, presents a systematic framework for intelligent technologies and vehicle-level architecture, and introduces testing methodologies to evaluate individual and integrated intelligent functions. Considering the increasing demand for vehicle intelligence, it is critical to gain an understanding of the growing variety of intelligent vehicle technologies and how they must function together effectively as a system.
X