Refine Your Search

Topic

Search Results

Journal Article

Security Threat Analysis of In-vehicle Network Using STRIDE-Based Attack Tree and Fuzzy Analytic Hierarchy Process

2021-10-22
Automotive cybersecurity issues are becoming more prominent than ever. SAE J3061 and ISO/SAE 21434 being drafted also indicate that automotive cybersecurity has been elevated to a position equal to or more important than functional safety. ...SAE J3061 and ISO/SAE 21434 being drafted also indicate that automotive cybersecurity has been elevated to a position equal to or more important than functional safety. ...Security threat analysis helps the development of the early concept phase of automotive cybersecurity. However, the threat analysis based on the traditional attack tree has the disadvantages of multiple subjective factors and low accuracy.
Event

Attend - Innovations in Mobility: Aerospace Digital Summit

2024-04-27
Innovations in Mobility: Aerospace Digital Summitaerospace mobility leaders convene leverage cutting-edge technology, design, develop safety measures, integrate current regulations, suggest future policies, expand markets, diversify revenue streams.
Journal Article

Security Threat Modeling and Automated Analysis for System Design

2021-04-29
Abstract Despite more and more rigorous defense mechanisms in place for cyber-physical systems, cybercriminals are increasingly attacking systems for benefits using a variety of means including malware, phishing, ransomware, and denial of service. Cyberattacks could not only cause significant economic loss but also disastrous consequences for individuals and organizations. Therefore, it is advantageous to detect and fix potential cyber vulnerabilities before the system is fielded. To this end, this article presents a language, VERDICT, and a novel framework, Cyber Vulnerability Analysis Framework (CyVAF) to (i) define cyber threats and mitigation defenses based on system properties, (ii) detect cyber vulnerabilities of system architecture automatically, and also (iii) suggest mitigation defenses. VERDICT is developed as an annex to the Architecture Analysis and Design Language (AADL) but can also be used independently.
Standard

ONBOARD SECURE WI-FI NETWORK PROFILE STANDARD

2021-06-18
CURRENT
ARINC687
This document defines a standard implementation for strong client authentication and encryption of Wi-Fi-based client connections to onboard Wireless LAN (WLAN) networks. WLAN networks may consist of multi-purpose inflight entertainment system networks operating in the Passenger Information and Entertainment System (PIES) domain, dedicated aircraft cabin wireless networks or localized Aircraft Integrated Data (AID) devices operating in the Aircraft Information Services (AIS) domain. The purpose of this document is to focus on the client devices requiring connections to these networks such as electronic flight bags, flight attendant mobile devices, onboard Internet of Things (IoT) devices, AID devices (acting as clients) and mobile maintenance devices. Passenger devices are not within the focus of this document.
Standard

Determination of Cost Benefits from Implementing a Blockchain Solution

2021-08-19
CURRENT
ARP6984
This SAE Aerospace Recommended Practice (ARP) provides insights on how to perform a Cost Benefit Analysis (CBA) to determine the Return on Investment (ROI) that would result from implementing a blockchain solution to a new or an existing business process. The word “blockchain” refers to a method of documenting when data transactions occur using a distributed ledger with desired immutable qualities. The scope of the current document is on enterprise blockchain which gives the benefit of standardized cryptography, legal enforceability and regulatory compliance. The document analyzes the complexity involved with this technology, lists some of the different approaches that can be used for conducting a CBA, and differentiates its analysis depending on whether the application uses a public or a private distributed network.
Journal Article

A Study on Secured Unmanned Aerial Vehicle-Based Fog Computing Networks

2023-11-03
Abstract With the recent advancement in technologies, researchers worldwide have a growing interest in unmanned aerial vehicles (UAVs). The last few years have been significant in terms of its global awareness, adoption, and applications across industries. In UAV-aided wireless networks, there are some limitations in terms of power consumption, data computation, data processing, endurance, and security. So, the idea of UAVs and Edge or Fog computing together deals with the limitations and provides intelligence at the network’s edge, which makes it more valuable to use in emergency applications. Fog computing distributes data in a decentralized way and blockchain also works on the principle of decentralization. Blockchain, as a decentralized database, uses cryptographic methods including hash functions and public key encryption to secure the user information. It is a prominent solution to secure the user’s information in blocks and maintain privacy.
Standard

Requirements for Probe Data Collection Applications

2022-06-09
CURRENT
J2945/C_202206
Connected vehicles can provide data from multiple sensors that monitor both the vehicle and the environment through which the vehicle is passing. The data, when shared, can be used to enhance and optimize transportation operations and management—specifically, traffic flow and infrastructure maintenance. This document describes an interface between vehicle and infrastructure for collecting vehicle/probe data. That data may represent a single point in time or may be accumulated over defined periods of time or distance, or may be triggered based on circumstance. The purpose of this document is to define an interoperable means of collecting the vehicle/probe data in support of the use cases defined herein. There are many additional use cases that may be realized based on the interface defined in this document. Note that vehicle diagnostics are not included within the scope of this document, but diagnostics-related features may be added to probe data in a future supplemental document.
Journal Article

Using a Dual-Layer Specification to Offer Selective Interoperability for Uptane

2020-08-24
Abstract This work introduces the concept of a dual-layer specification structure for standards that separate interoperability functions, such as backward compatibility, localization, and deployment, from those essential to reliability, security, and functionality. The latter group of features, which constitute the actual standard, make up the baseline layer for instructions, while all the elements required for interoperability are specified in a second layer, known as a Protocols, Operations, Usage, and Formats (POUF) document. We applied this technique in the development of a standard for Uptane [1], a security framework for over-the-air (OTA) software updates used in many automobiles. This standard is a good candidate for a dual-layer specification because it requires communication between entities, but does not require a specific format for this communication.
Journal Article

Threat Identification and Defense Control Selection for Embedded Systems

2020-08-18
Abstract Threat identification and security analysis have become mandatory steps in the engineering design process of high-assurance systems, where successful cyberattacks can lead to hazardous property damage or loss of lives. This article describes a novel approach to perform security analysis on embedded systems modeled at the architectural level. The tool, called Security Threat Evaluation and Mitigation (STEM), associates threats from the Common Attack Pattern Enumeration and Classification (CAPEC) library with components and connections and suggests potential defense patterns from the National Institute of Standards and Technology (NIST) Special Publication (SP) 800-53 security standard. This article also provides an illustrative example based on a drone package delivery system modeled in AADL.
Technical Paper

Robustness Testing of a Watermarking CAN Transceiver

2022-03-29
2022-01-0106
To help address the issue of message authentication on the Controller Area Network (CAN) bus, researchers at Virginia Tech and Ford Motor Company have developed a proof-of-concept time-evolving watermark-based authentication mechanism that offers robust, cryptographically controlled confirmation of a CAN message's authenticity. This watermark is injected as a common-mode signal on both CAN-HI and CAN-LO bus voltages and has been proven using a low-cost software-defined radio (SDR) testbed. This paper extends prior analysis on the design and proof-of-concept to consider robustness testing over the range of voltages, both steady state drifts and transients, as are commonly witnessed within a vehicle. Overall performance results, along with a dynamic watermark amplitude control, validate the concept as being a practical near-term approach at improving authentication confidence of messages on the CAN bus.
Technical Paper

Medical Cargo Delivery using Blockchain Enabled Unmanned Aircraft Systems

2022-05-26
2022-26-0003
Significant growth of Unmanned Aerial Vehicles (UAV) has unlocked many services and applications opportunities in the healthcare sector. Aerial transportation of medical cargo delivery can be an effective and alternative way to ground-based transport systems in times of emergency. To improve the security and the trust of such aerial transportation systems, Blockchain can be used as a potential technology to manage, operate and monitor the entire process. In this paper, we present a blockchain network solution based on Ethereum for the transportation of medical cargo such as blood, medicines, vaccines, etc. The smart contract solution developed in solidity language was tested using the Truffle program. Ganache blockchain test network was employed to host the blockchain network and test the operation of the proposed blockchain model. The suitability of the model is validated in real-time using a UAV and all the flight data are captured and uploaded into the blockchain.
Technical Paper

Evaluating Trajectory Privacy in Autonomous Vehicular Communications

2019-04-02
2019-01-0487
Autonomous vehicles might one day be able to implement privacy preserving driving patterns which humans may find too difficult to implement. In order to measure the difference between location privacy achieved by humans versus location privacy achieved by autonomous vehicles, this paper measures privacy as trajectory anonymity, as opposed to single location privacy or continuous privacy. This paper evaluates how trajectory privacy for randomized driving patterns could be twice as effective for autonomous vehicles using diverted paths compared to Google Map API generated shortest paths. The result shows vehicles mobility patterns could impact trajectory and location privacy. Moreover, the results show that the proposed metric outperforms both K-anonymity and KDT-anonymity.
Journal Article

Wireless Security in Vehicular Ad Hoc Networks: A Survey

2022-08-17
Abstract Vehicular communications face unique security issues in wireless communications. While new vehicles are equipped with a large set of communication technologies, product life cycles are long and software updates are not widespread. The result is a host of outdated and unpatched technologies being used on the street. This has especially severe security impacts because autonomous vehicles are pushing into the market, which will rely, at least partly, on the integrity of the provided information. We provide an overview of the currently deployed communication systems and their security weaknesses and features to collect and compare widely used security mechanisms. In this survey, we focus on technologies that work in an ad hoc manner. This includes Long-Term Evolution mode 4 (LTE-PC5), Wireless Access in Vehicular Environments (WAVE), Intelligent Transportation Systems at 5 Gigahertz (ITS-G5), and Bluetooth.
Journal Article

A Deep Neural Network Attack Simulation against Data Storage of Autonomous Vehicles

2023-09-29
Abstract In the pursuit of advancing autonomous vehicles (AVs), data-driven algorithms have become pivotal in replacing human perception and decision-making. While deep neural networks (DNNs) hold promise for perception tasks, the potential for catastrophic consequences due to algorithmic flaws is concerning. A well-known incident in 2016, involving a Tesla autopilot misidentifying a white truck as a cloud, underscores the risks and security vulnerabilities. In this article, we present a novel threat model and risk assessment (TARA) analysis on AV data storage, delving into potential threats and damage scenarios. Specifically, we focus on DNN parameter manipulation attacks, evaluating their impact on three distinct algorithms for traffic sign classification and lane assist.
X