Refine Your Search

Topic

Author

Affiliation

Search Results

Event

2024-05-19
Event

2022 COMVEC™

2024-05-19
COMVEC™ conference is the only North American event that addresses vehicles and equipment spanning on-highway, off-highway, agricultural, construction, industrial, military, and mining sectors.
Journal Article

A Centrally Managed Identity-Anonymized CAN Communication System*

2018-05-16
Abstract Identity-Anonymized CAN (IA-CAN) protocol is a secure CAN protocol, which provides the sender authentication by inserting a secret sequence of anonymous IDs (A-IDs) shared among the communication nodes. To prevent malicious attacks from the IA-CAN protocol, a secure and robust system error recovery mechanism is required. This article presents a central management method of IA-CAN, named the IA-CAN with a global A-ID, where a gateway plays a central role in the session initiation and system error recovery. Each ECU self-diagnoses the system errors, and (if an error happens) it automatically resynchronizes its A-ID generation by acquiring the recovery information from the gateway. We prototype both a hardware version of an IA-CAN controller and a system for the IA-CAN with a global A-ID using the controller to verify our concept.
Journal Article

A Comprehensive Attack and Defense Model for the Automotive Domain

2019-01-17
Abstract In the automotive domain, the overall complexity of technical components has increased enormously. Formerly isolated, purely mechanical cars are now a multitude of cyber-physical systems that are continuously interacting with other IT systems, for example, with the smartphone of their driver or the backend servers of the car manufacturer. This has huge security implications as demonstrated by several recent research papers that document attacks endangering the safety of the car. However, there is, to the best of our knowledge, no holistic overview or structured description of the complex automotive domain. Without such a big picture, distinct security research remains isolated and is lacking interconnections between the different subsystems. Hence, it is difficult to draw conclusions about the overall security of a car or to identify aspects that have not been sufficiently covered by security analyses.
Journal Article

A Comprehensive Risk Management Approach to Information Security in Intelligent Transport Systems

2021-05-05
Abstract Connected vehicles and intelligent transportation systems are currently evolving into highly interconnected digital environments. Due to the interconnectivity of different systems and complex communication flows, a joint risk analysis for combining safety and security from a system perspective does not yet exist. We introduce a novel method for joint risk assessment in the automotive sector as a combination of the Diamond Model, Failure Mode and Effects Analysis (FMEA), and Factor Analysis of Information Risk (FAIR). These methods have been sequentially composed, which results in a comprehensive risk management approach to information security in an intelligent transport system (ITS). The Diamond Model serves to identify and structurally describe threats and scenarios, the widely accepted FMEA provides threat analysis by identifying possible error combinations, and FAIR provides a quantitative estimation of probabilities for the frequency and magnitude of risk events.
Journal Article

A Deep Neural Network Attack Simulation against Data Storage of Autonomous Vehicles

2023-09-29
Abstract In the pursuit of advancing autonomous vehicles (AVs), data-driven algorithms have become pivotal in replacing human perception and decision-making. While deep neural networks (DNNs) hold promise for perception tasks, the potential for catastrophic consequences due to algorithmic flaws is concerning. A well-known incident in 2016, involving a Tesla autopilot misidentifying a white truck as a cloud, underscores the risks and security vulnerabilities. In this article, we present a novel threat model and risk assessment (TARA) analysis on AV data storage, delving into potential threats and damage scenarios. Specifically, we focus on DNN parameter manipulation attacks, evaluating their impact on three distinct algorithms for traffic sign classification and lane assist.
Journal Article

A Distributed “Black Box” Audit Trail Design Specification for Connected and Automated Vehicle Data and Software Assurance

2020-10-14
Abstract Automotive software is increasingly complex and critical to safe vehicle operation, and related embedded systems must remain up to date to ensure long-term system performance. Update mechanisms and data modification tools introduce opportunities for malicious actors to compromise these cyber-physical systems, and for trusted actors to mistakenly install incompatible software versions. A distributed and stratified “black box” audit trail for automotive software and data provenance is proposed to assure users, service providers, and original equipment manufacturers (OEMs) of vehicular software integrity and reliability. The proposed black box architecture is both layered and diffuse, employing distributed hash tables (DHT), a parity system and a public blockchain to provide high resilience, assurance, scalability, and efficiency for automotive and other high-assurance systems.
Journal Article

A Global Survey of Standardization and Industry Practices of Automotive Cybersecurity Validation and Verification Testing Processes and Tools

2023-11-16
Abstract The United Nation Economic Commission for Europe (UNECE) Regulation 155—Cybersecurity and Cybersecurity Management System (UN R155) mandates the development of cybersecurity management systems (CSMS) as part of a vehicle’s lifecycle. ...Due to the focus of R155 and its suggested implementation guideline, ISO/SAE 21434:2021—Road Vehicle Cybersecurity Engineering, mainly centering on the alignment of cybersecurity risk management to the vehicle development lifecycle, there is a gap in knowledge of proscribed activities for validation and verification testing. ...An inherent component of the CSMS is cybersecurity risk management and assessment. Validation and verification testing is a key activity for measuring the effectiveness of risk management, and it is mandated by UN R155 for type approval.
Journal Article

A Quantitative Analysis of Autonomous Vehicle Cybersecurity as a Component of Trust

2023-08-10
Abstract Connected autonomous vehicles that employ internet connectivity are technologically complex, which makes them vulnerable to cyberattacks. Many cybersecurity researchers, white hat hackers, and black hat hackers have discovered numerous exploitable vulnerabilities in connected vehicles. ...This study expanded the technology acceptance model (TAM) to include cybersecurity and level of trust as determinants of technology acceptance. This study surveyed a diverse sample of 209 licensed US drivers over 18 years old.
Journal Article

A Systematic Mapping Study on Security Countermeasures of In-Vehicle Communication Systems

2021-11-16
Abstract The innovations of vehicle connectivity have been increasing dramatically to enhance the safety and user experience of driving, while the rising numbers of interfaces to the external world also bring security threats to vehicles. Many security countermeasures have been proposed and discussed to protect the systems and services against attacks. To provide an overview of the current states in this research field, we conducted a systematic mapping study (SMS) on the topic area “security countermeasures of in-vehicle communication systems.” A total of 279 papers are identified based on the defined study identification strategy and criteria. We discussed four research questions (RQs) related to the security countermeasures, validation methods, publication patterns, and research trends and gaps based on the extracted and classified data. Finally, we evaluated the validity threats and the whole mapping process.
Technical Paper

A Zero Trust Architecture for Automotive Networks

2024-04-09
2024-01-2793
Since the early 1990’s, commercial vehicles have suffered from repeated vulnerability exploitations that resulted in a need for improved automotive cybersecurity. This paper outlines the strategies and challenges of implementing an automotive Zero Trust Architecture (ZTA) to secure intra-vehicle networks. ...This research successfully met the four requirements and demonstrated that using ZT principles in an on-vehicle network greatly improved the cybersecurity posture with manageable impact to system performance and deployment.
Best Practice

AVSC Best Practice for Describing an Operational Design Domain: Conceptual Framework and Lexicon

2020-04-15
CURRENT
AVSC00002202004
An ADS-operated vehicle’s operational design domain (ODD) is defined by the manufacturer based on numerous factors. Research is underway at other organizations to define and organize ODD elements into taxonomies and other relational constructs. In order to enhance collaboration and communication between manufacturers and developers and transportation authorities, common terms and consistent frameworks are needed. The conceptual framework presented by Automated Vehicle Safety Consortium establishes a lexicon that can be used consistently by ADS developers and manufacturers responsible for defining their ADS ODD. A common framework and lexicon will reduce confusion, align expectations, and therefore build public trust, acceptance, and confidence.
Video

Advancing Aircraft Cyber Security - Potential New Architectures and Technologies

2012-03-16
Cyber security in the aviation industry, especially in relation to onboard aircraft systems, presents unique challenges in its implementation and management. The cyber threat model is constantly evolving and will continually present new and different challenges to the aircraft operator in responding to new cyber threats without either invoking a lengthy software update and re-certification process or limiting aircraft-to-ground communications to the threatened system or systems. This presentation discusses a number of system architectural options and developing technologies that could be considered to enhance the aircraft cyber protection and defensive capabilities of onboard systems as well as to minimize the effort associated with certification/re-certification. Some of these limit the aircraft?s vulnerabilities or in cyber terms, its ?threat surface?.
Event

AeroTech®

2024-05-19
New for 2022, AeroTech® will deliver even more robust programming by teaming up with AeroMat to deliver learning opportunities dedicated to: Additive Manufacturing and Materials, Environment and Sustainable Aviation (Sustainability), Autonomy and AI, Safety and Human Factors, Modeling, Simulation and Testing, Cybersecurity / Cyber-Physical Security, Industry 4.0 Smart Manufacturing and Assembly, IDEAL Summit (inclusion, diversity, equity, accessibility and leadership), Advanced Air Mobility (AAM) and Multimodal Mobility (M3)
Event

AeroTech® Digital Summit

2024-05-19
New for 2022, AeroTech® will deliver even more robust programming by teaming up with AeroMat to deliver learning opportunities dedicated to: Additive Manufacturing and Materials, Environment and Sustainable Aviation (Sustainability), Autonomy and AI, Safety and Human Factors, Modeling, Simulation and Testing, Cybersecurity / Cyber-Physical Security, Industry 4.0 Smart Manufacturing and Assembly, IDEAL Summit (inclusion, diversity, equity, accessibility and leadership), Advanced Air Mobility (AAM) and Multimodal Mobility (M3)
Event

AeroTech® Volunteer Resources

2024-05-19
New for 2022, AeroTech® will deliver even more robust programming by teaming up with AeroMat to deliver learning opportunities dedicated to: Additive Manufacturing and Materials, Environment and Sustainable Aviation (Sustainability), Autonomy and AI, Safety and Human Factors, Modeling, Simulation and Testing, Cybersecurity / Cyber-Physical Security, Industry 4.0 Smart Manufacturing and Assembly, IDEAL Summit (inclusion, diversity, equity, accessibility and leadership), Advanced Air Mobility (AAM) and Multimodal Mobility (M3)
Magazine

Aerospace & Defense Technology: April 2023

2023-04-06
Breathing Life into Artificial Intelligence and Next Generation Autonomous Aerospace Systems Robotic Rotational Molding Creates New Opportunities for Military and Aerospace Applications Rim-Driven Electric Aircraft Propulsion High-Speed Midwave Infrared Cameras Enable Military Test Range Tracking System What Today's Advances in Radar Technology Mean for Testing and Training Tackling Ruggedization Challenges for RF Communications in Software Defined Radios AUVSI XPONENTIAL 2023 The Blueprint for Autonomy Multi-Scale Structuring of the Polar Ionosphere Understanding a radically new sensing capability for polar ionospheric science introduced by observational evidence recently provided by the electronically steerable Resolute Bay Incoherent Scatter Radar (RISR). Stepped-Frequency Distributed Radar for Through-the-Wall Sensing A technical analysis of the effectiveness of distributed radar for through-the-wall sensing applications.
Magazine

Aerospace & Defense Technology: June 2019

2019-06-01
Eyes in the Sky Rugged High-Speed Cameras Capture Critical Flight Test Video Data Panoramic Thermal Imaging Technology A New Concept in Naval Defense Coating Technology Enables Effective Missile Countermeasures FACE™ - Future Airborne Capability Environment Diminishing U.S. Combat Superiority Drives New Software Development Requirements Broadband 1.2- and 2.4-mm Gallium Nitride (GaN) Power Amplifier Designs Multi-Agent RF Propagation Simulator Electrical Characterization of Crystalline UO2, THO2 and U0.71TH0.29O2 Evaluating the suitability of advanced alloys for use in uranium-based neutron detectors. ONR Short Pulse Research, Evaluation and non-SWaP Demonstration for C-sUAV Study Research project is designed to map small unmanned aerial vehicle (sUAV) effects space, empirically and by simulation, as a function of high power microwave (HPM) waveform to develop effective countermeasures.
Magazine

Aerospace & Defense Technology: October 2015

2015-10-01
Countering cybersecurity threats against unmanned vehicle systems Cranfield University researchers have developed a monitoring system whose purpose is to monitor mission profile implementation at both high level mission execution and at lower level software code operation to tackle specific threats of malicious code and possible spurious commands received over a vehicle's data links.
X