Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

A Collaborative Design Environment to Support Multidisciplinary Conceptual Systems Design

2005-10-03
2005-01-3435
The Aerospace Systems Design Laboratory at the Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, has recently created the “Collaborative Design Environment” (CoDE), a next-generation design facility supporting efficient, rapid-turnaround conceptual design. The CoDE combines cost-effective, off-the-shelf information technology with advanced design methodologies and tools in a customized, user-centered physical layout that harnesses the power of creative design teams. The CoDE will enable researchers to develop, test and apply new approaches to conceptual design, and to improve modeling and simulation fidelity. It will also support sponsored design projects as well as student teams participating in national design competitions.
Technical Paper

Variable Cycle Optimization for Supersonic Commercial Applications

2005-10-03
2005-01-3400
Variable cycle engines (VCEs) hold promise as an enabling technology for supersonic business jet (SBJ) applications. Fuel consumption can potentially be minimized by modulating the engine cycle between the subsonic and supersonic phases of flight. The additional flexibility may also contribute toward meeting takeoff and landing noise and emissions requirements. Several different concepts have been and are currently being investigated to achieve variable cycle operation. The core-driven fan stage (CDFS) variable cycle engine is perhaps the most mature concept since an engine of this type flew in the USAF Advanced Tactical Fighter prototype program in the 1990s. Therefore, this type of VCE is of particular interest for potential commercial application. To investigate the potential benefits of a CDFS variable cycle engine, a parametric model is developed using the NASA Numerical Propulsion System Simulation (NPSS).
Technical Paper

Response Surface Utilization in the Exploration of a Supersonic Business Jet Concept with Application of Emerging Technologies

2003-09-08
2003-01-3059
Commercial and independent market assessments continue to reveal a strong market desire for a supersonic business jet capable of meeting the requirements for supersonic, overland flight. However, the challenge of meeting the as-yet undefined regulations for overland flight, as well as meeting current and future noise and emission regulations, is daunting. An integrated modeling and simulation environment, based on the creation of response surface metamodels, allows for the rapid evaluation of a design space. From this environment the effects on metrics such as emissions, economics, sonic boom profiles and noise levels can rapidly be seen and manipulated. Such an environment also allows the application of technologies to the vehicle in order to evaluate their potential impact on the system-level metrics.
Technical Paper

A Probabilistic Evaluation of Turbofan Engine Cycle Parameters for a Mach 1.8 Interceptor Aircraft

2003-09-08
2003-01-3056
A supersonic engine for a high Mach interceptor mission is modeled, and the requirements for the engine at different flight conditions are discussed. These include low fuel consumption at a non-afterburning supersonic dash Mach number for interception, and high thrust, both afterburning and non-afterburning, at a high subsonic Mach number for combat engagement. In addition, the engine should have low frontal area and low weight for a given sea level thrust rating. For the design point, the sea level static, standard day non-afterburning thrust is fixed at 20,000 lbs. The primary independent parameters varied in the study are fan pressure ratio, overall pressure ratio, turbine inlet temperature, throttle ratio, and extraction ratio. A design of experiments (DoE) is set up to vary the independent parameters to produce a meta-model for engine performance, geometry and weight.
Technical Paper

Development of an Object Oriented Vehicle Library for Automated Design Analysis

2001-09-11
2001-01-3034
In today’s emerging parametric and probabilistic design environments, disciplinary or multidisciplinary analysis data are represented efficiently with the use of metamodels. Each metamodel is an efficient replacement for a particular design analysis tool. An object oriented library is developed in this paper to represent vehicle configuration in a generic manner and assist the analysis data collection for the metamodeling process. The library is used to produce input files for design analysis tools. It can also be used to create preprocessors for integration environments used in the design process. This allows for smoother integrations of analysis programs within such environments as the environment now needs only replace data in one central input file rather than a file for each analysis tool.
Technical Paper

A Bayesian Approach to Non-Deterministic Hypersonic Vehicle Design

2001-09-11
2001-01-3033
Affordable, reliable endo- and exoatmospheric transportation, for both the military and commercial sectors, grows in importance as the world grows smaller and space exploration and exploitation increasingly impact our daily lives. However, the impact of disciplinary, operational, and technological uncertainties inhibit the design of the requisite hypersonic vehicles, an inherently multidisciplinary and non-deterministic process. Without investigation, these components of design uncertainty undermine the designers’ decision-making confidence. In this paper, the authors propose a new probabilistic design method, using Bayesian Statistics techniques, which allows assessment of the impact of disciplinary uncertainty on the confidence in the design solution. The proposed development of a two-stage reusable launch vehicle configuration highlights the means to first quantify the fidelity of the disciplinary analysis tools utilized, then propagate such to the vehicle system level.
Technical Paper

Implementation of Parametric Anaylsis to the Aerodynamic Design of a Hypersonic Strike Fighter

2000-10-10
2000-01-5561
A Hypersonic Strike Fighter (HSF) would provide many benefits over current fighters, including increased effectiveness and survivability. However, there are many design challenges to developing such a vehicle. Therefore the conceptual design of an HSF requires the development of new tools and methods to analyze and select vehicle concepts. A parametric method was developed to determine aerodynamic characteristics of hypersonic vehicles in a rapid, automated way. This parametric method and other tools were then used to select a baseline design and optimize this baseline for the notional mission.
Technical Paper

Formulation, Realization, and Demonstration of a Process to Generate Aerodynamic Metamodels for Hypersonic Cruise Vehicle Design

2000-10-10
2000-01-5559
The desire to facilitate the conceptual and preliminary design of hypersonic cruise vehicles has created the need for simple, fast, versatile, and trusted aerodynamic analysis tools. Metamodels representing physics-based engineering codes provide instantaneous access to calibrated tools. Nonlinear transformations extend the capability of metamodels to accurately represent a large design space. Independence, superposition, and scaling properties of the hypersonic engineering method afford an expansive design space without traditional compounding penalties. This one-time investment results in aerodynamic and volumetric metamodels of superior quality and versatility which may be used in many forms throughout early design. As a module, they can be an integral component within a multidisciplinary analysis and optimization package. Aerodynamic polars they produce may provide performance information for mission analysis.
Technical Paper

A Method for Technology Selection Based on Benefit, Available Schedule and Budget Resources

2000-10-10
2000-01-5563
The accepted paradigm in aerospace systems design was to design systems sequentially and iteratively to maximize performance based on minimum weight. The traditional paradigm does not work in the rapidly changing global environment. A paradigm shift from the norm of “design for performance” to “design for affordability and quality” has been occurring in recent decades to respond to the changing global environment. Observations were made regarding new tenets needed to bridge the gap from the old to the new. These tenets include new methods and techniques for designing complex systems due to uncertainty and mulit-dimensionality, consideration of the life cycle of the system, and the methods needed to assess breakthrough technologies to meet aggressive goals of the future. The Technology Identification, Evaluation, and Selection method was proposed as a possible solution to the paradigm shift.
Technical Paper

Use of Flight Simulation in Early Design: Formulation and Application of the Virtual Testing and Evaluation Methodology

2000-10-10
2000-01-5590
In current design practices, safety, operational and handling criteria are often overlooked until late design stages due to the difficulty in capturing such criteria early enough in the design cycle and in the presence of limited and uncertain knowledge. Virtual (flight) testing and evaluation, based on autonomous modeling and simulation, is proposed as a solution to this shortcoming. The methodology enables one to evaluate vehicle behavior in relatively complex situations through a series of specific flight scenarios. Bringing this methodology to conceptual design requires the creation of an automatic link between the design database and the autonomous flight simulation environment. This paper describes the creation of such a link and an implementation of the Virtual Testing and Evaluation methodology with the use of an advanced design concept.
X