Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Vehicle Lightweighting Impacts on Energy Consumption Reduction Potential Across Advanced Vehicle Powertrains

2024-04-09
2024-01-2266
The National Highway Traffic Safety Administration (NHTSA) plays a crucial role in guiding the formulation of Corporate Average Fuel Economy (CAFE) standards, and at the forefront of this regulatory process stands Argonne National Laboratory (Argonne). Argonne, a U.S. Department of Energy (DOE) research institution, has developed Autonomie—an advanced and comprehensive full-vehicle simulation tool that has solidified its status as an industry standard for evaluating vehicle performance, energy consumption, and the effectiveness of various technologies. Under the purview of an Inter-Agency Agreement (IAA), the DOE Argonne Site Office (ASO) and Argonne have assumed the responsibility of conducting full-vehicle simulations to support NHTSA's CAFE rulemaking initiatives. This paper introduces an innovative approach that hinges on a large-scale simulation process, encompassing standard regulatory driving cycles tailored to various vehicle classes and spanning diverse timeframes.
Technical Paper

Component Sizing Optimization Based on Technological Assumptions for Medium-Duty Electric Vehicles

2024-04-09
2024-01-2450
In response to the stipulations of the Energy Policy and Conservation Act and the global momentum toward carbon mitigation, there has been a pronounced tightening of fuel economy standards for manufacturers. This stricter regulation is coupled with an accelerated transition to electric vehicles, catalyzed by advances in electrification technology and a decline in battery cost. Improvements in the fuel economy of medium- and heavy-duty vehicles through electrification are particularly noteworthy. Estimating the magnitude of fuel economy improvements that result from technological advances in these vehicles is key to effective policymaking. In this research, we generated vehicle models based on assumptions regarding advanced transportation component technologies and powertrains to estimate potential vehicle-level fuel savings. We also developed a systematic approach to evaluating a vehicle’s fuel economy by calibrating the size of the components to satisfy performance requirements.
Technical Paper

Powering Tomorrow's Light, Medium, and Heavy-Duty Vehicles: A Comprehensive Techno-Economic Examination of Emerging Powertrain Technologies

2024-04-09
2024-01-2446
This paper presents a comprehensive analysis of emerging powertrain technologies for a wide spectrum of vehicles, ranging from light-duty passenger vehicles to medium and heavy-duty trucks. The study focuses on the anticipated evolution of these technologies over the coming decades, assessing their potential benefits and impact on sustainability. The analysis encompasses simulations across a wide range of vehicle classes, including compact, midsize, small SUVs, midsize SUVs, and pickups, as well as various truck types, such as class 4 step vans, class 6 box trucks, and class 8 regional and long-haul trucks. It evaluates key performance metrics, including fuel consumption, estimated purchase price, and total cost of ownership, for these vehicles equipped with advanced powertrain technologies such as mild hybrid, full hybrid, plug-in hybrid, battery electric, and fuel cell powertrains.
Technical Paper

Impact of Advanced Engine Technologies on Energy Consumption Reduction Potentials

2024-04-09
2024-01-2825
The establishment of Corporate Average Fuel Economy (CAFE) standards by the Energy Policy and Conservation Act (EPCA) of 1975 marked a pivotal moment in the automotive industry's pursuit of greater fuel efficiency. The responsibility for the development and enforcement of these standards was assigned to the U.S. Department of Transportation (DOT), with the National Highway Traffic Safety Administration (NHTSA) assuming a critical role in their oversight and implementation. In collaboration with Argonne National Laboratory (Argonne), supported by the U.S. Department of Energy (DOE), significant strides have been made in advancing fuel efficiency through the development of Autonomie, a leading full-vehicle simulation tool. Through an Inter-Agency Agreement between the DOE Argonne Site Office and Argonne, comprehensive full-vehicle simulations are conducted to support NHTSA's CAFE rulemaking processes.
Technical Paper

Evaluating Class 6 Delivery Truck Fuel Economy and Emissions Using Vehicle System Simulations for Conventional and Hybrid Powertrains and Co-Optima Fuel Blends

2022-09-13
2022-01-1156
The US Department of Energy’s Co-Optimization of Engine and Fuels Initiative (Co-Optima) investigated how unique properties of bio-blendstocks considered within Co-Optima help address emissions challenges with mixing controlled compression ignition (i.e., conventional diesel combustion) and enable advanced compression ignition modes suitable for implementation in a diesel engine. Additionally, the potential synergies of these Co-Optima technologies in hybrid vehicle applications in the medium- and heavy-duty sector was also investigated. In this work, vehicles system were simulated using the Autonomie software tool for quantifying the benefits of Co-Optima engine technologies for medium-duty trucks. A Class 6 delivery truck with a 6.7 L diesel engine was used for simulations over representative real-world and certification drive cycles with four different powertrains to investigate fuel economy, criteria emissions, and performance.
Technical Paper

Medium- and Heavy-Duty Value of Technology Improvement

2022-03-29
2022-01-0529
Improvements in vehicle technology impact the purchase price of a vehicle and its operating cost. In this study, the monetary benefit of a technology improvement includes the potential reduction in vehicle price from using cheaper or smaller components, as well as the discounted value of the fuel cost savings. As technology progresses over time, the value and benefit of improving technology varies as well. In this study, the value of improving a few selected technologies (battery energy density, electric drive efficiency, tire rolling resistance, aerodynamics, light weighting) is studied and the value of the associated cost saving is quantified. The change in saving as a function of time, powertrain selection and vehicle type is also quantified. For example, a 10% reduction in aerodynamic losses is worth $24,222 today but only $8,810 in 2030 in an electric long haul truck. The decrease in value is primarily due to expected battery cost reduction over time.
Journal Article

Detailed Analysis of U.S. Department of Energy Engine Targets Compared to Existing Engine Technologies

2020-04-14
2020-01-0835
The U.S. Department of Energy, Vehicle Technologies Office (U.S. DOE-VTO) has been developing more energy-efficient and environmentally friendly highway transportation technologies that would enable the United States to burn less petroleum on the road. System simulation is an accepted approach for evaluating the fuel economy potential of advanced (future) technology targets. U.S. DOE-VTO defines the targets for advancement in powertrain technologies (e.g., engine efficiency targets, battery energy density, lightweighting, etc.) Vehicle system simulation models based on these targets have been generated in Autonomie, reflecting the different EPA classifications of vehicles for different advanced timeframes as part of the DOE Benefits and Scenario (BaSce) Analysis. It is also important to evaluate the progress of these component technical targets compared to existing technologies available in the market.
Technical Paper

Impact of TEGs on the Fuel Economy of Conventional and Hybrid Vehicles

2015-04-14
2015-01-1712
Thermoelectric generators (TEGs) can be used for a variety of applications in automobiles. There is a lot of interest in using them for waste heat recovery from a fuel economy point of view. This paper examines the potential of TEGs to provide cost-effective improvements in the fuel economy of conventional vehicles and hybrid electric vehicles (HEVs). Simulation analysis is used to quantify fuel economy benefits. The paper explains how a TEG is used in a vehicle and explores the idea of improving the TEG design by introducing a thermal reservoir in the TEG model to improve the waste heat recovery. An effort is made to identify the technological and economic barriers (and their thresholds) that could prevent TEGs from becoming an acceptable means of waste heat recovery in automobiles.
X