Refine Your Search

Topic

Author

Search Results

Technical Paper

Influence of Recycled Scrap Particles on Tensile Behavior of Additively Manufactured Polylactic Acid (PLA) Composites for Automotive Upholstery Applications

2024-02-23
2023-01-5151
In the domain of Additive Manufacturing (AM), Fused Filament Fabrication (FFF) hath flourished as a promising method for crafting complex geometric parts with a commendable degree of dimensional precision. The perception of recycling metal scrap particles obtained from machining operations unbound the scope of developing sustainable layered polymer composites with integral properties of metal particles. In this context, the present work is intended to investigate the tensile properties of Polylactic Acid (PLA), strengthened with fine particles of bronze scrap particles as reinforcement fabricated by FFF-based additive manufacturing technique. The composite specimens are manufactured as per ASTM standard with different combinations of build orientation, infill pattern, and no. of reinforcement layers.
Technical Paper

Enhancement of Polycrystalline Silicon Solar Cell’s Efficiency through Electrospinning Coating Using Erbium Oxide

2024-02-23
2023-01-5163
The current research focuses on enhancing the performance of Si solar cells by using Er2O3 (Erbium Oxide) in cubic crystalline nature serves as an anti-reflection coating material. An anti-reflective coating aims to improve the Efficient Power Conversion (EPC) of polycrystalline silicon wafers solar cells (PSSC) utilised in solar roof panels of the automotive sector. It also exhibits superior light transmittance and least light reflectance, which eventually leads to the increase EPC. Erbium oxide helps to convert low energy photons into high energy photons. The incident photons, which lies on the solar cell, gradually losses its energy to travel in a denser medium and dissipate in the form of heat energy. In order to overcome the rate of reflection, current research aims in synthesis of erbium oxide nanosheets using electrospinning deposition technique for varying deposition timings such as 1, 1.5 and 2 hours.
Technical Paper

Application of Taguchi Based ANFIS Approach in Wire Electrical Discharge Machining of Inconel 625 for Automobile Applications

2023-11-10
2023-28-0148
Nickel-based superalloys are most commonly engaged in a numerous engineering use, including the making of food processing equipment, aerospace components, and chemical processing equipment. These materials are often regarded as difficult-to-machine materials in conventional machining approach due to their higher strength and thermal conductivity. Various methods for more effective machining of hard materials such as nickel-based superalloys have been developed. Wire electrical discharge machining is one of them. In this paper, an effect has been taken to develop an adaptive neuro-fuzzy inference system for predicting WEDM performance in the future. To analyse the model’s variable input, the paper employs the Taguchi’s design and analysis techniques. The evolved ANFIS model aims to simulate the process’s various characteristics and predicted values. A comparison of the two was then made, and it was discovered that the predicted values are much closer to the actual outcomes.
Technical Paper

Modeling and Analysis of Motorcycle Assembly for Dynamic Investigation

2023-11-10
2023-28-0117
“The purpose of this study is to explore the structural behavior of motorcycle frames that are fabricated from metals such as steel and aluminum, and that are welded together to generate beams. The components of the wheel, handlebar, and saddle are assembled together to form the chassis of the bicycle. For the purpose of determining modal characteristics such natural frequencies and mode shapes, two different analytical approaches, namely finite element analysis (FEA) and experimental modal analysis (EMA), were utilized. The framework of the chassis was design in 3D using CAD software to carry out the FEA, and after specifying the meshing type and material parameters, normal mode analysis was carried out. To contrast modal characteristics with FEA results, EMA utilized impact hammer testing with a roving accelerometer approach.
Technical Paper

Design and Investigation of Automatic Trash Collecting Machine for Industry

2023-11-10
2023-28-0179
Scrap collection from any location is handled with mortal interference in several places and companies which may be extremely harmful or even dangerous to humanity. The demand for robotization has risen rapidly in recent years, owing to cutting-edge technologies that minimize manpower and threat-taking training directly or indirectly. The main objective of the paper is to study, analyze, investigate the main contribution of waste collecting by workers while cleaning in the Mechanical Industry. In order to ensure the safety of the workers during cleaning we had implemented the Automatic Trash Collecting Machine in the industry. For Fabricating the Trash collecting Machine first we had analyzed the problem in the industry and then we had started the free hand sketch of Trash Collecting Machine. Then the design work of Automatic Trash Collecting Machine is done in the modeling software Catia V5. Then the material selection for our model has been done.
Technical Paper

Predictive Modelling and Process Parameter Prediction for Monel 400 Wire Electrical Discharge Machining for Rocket Frames

2023-11-10
2023-28-0088
Due to their inherent properties and superior performance over titanium-based materials, nickel-based superalloys are widely utilized in the manufacturing industry. Monel 400 is among them. This nickel-copper alloy possesses exceptional corrosion resistance and mechanical properties. Monel 400 is primarily utilized in the chemical industry, heat exchangers, and turbine component manufacturing. Due to the properties of Monel 400, it is deemed as hard to machine materials with the aid of conventional methods. For investigating the performance of this process, a three-level analysis was carried out. Pulse on duration and applied current at three levels are the independent parameters used for designing the experiments. In this present article, a single-response analysis technique is used which is known as Taguchi to investigate the impact of the various process parameters on the output variables.
Technical Paper

Optimization of Spark Erosion Machining of Monel 400 Alloy for Automobile Applications

2023-11-10
2023-28-0140
Monel 400, a type of nickel alloy which is adopted in numerous engineering fields, such as high-temperature devices. Owing to its better strength and thermal diffusion, it can be difficult to machine with conventional methods. In order to avoid the disadvantages of conventional methods, various advanced material removal techniques have been developed. One of these is Wire Electro Discharge Machining (WEDM). This process is an evolution of the electrical discharge method. In the process of WEDM, difficult materials with intricate forms are usually machined. In this study, the performance of this method on Monel 400 has been analyzed. The three independent variables that are considered when it comes to analyzing the performance of this process are the pulse on, the applied current, and the pulse off. The experiments were performed using the design approach of Taguchi, which involves using an L27 orthogonal array.
Technical Paper

Investigations on Wire Electrical Discharge Machining of Magnesium Alloy for Automobile Parts

2023-11-10
2023-28-0155
Magnesium alloy, known for its high strength and lightweight properties, finds widespread utilization in various technical applications. Aerospace applications, such as fuselages and steering columns, are well-suited for their utilization. These materials are frequently employed in automotive components, such as steering wheels and fuel tank lids, due to their notable corrosion resistance. The performance of magnesium alloy components remains unimproved by normal manufacturing methods due to the inherent characteristics of the material. This work introduces a contemporary approach to fabricating complex geometries through the utilization of Wire-Electro Discharge Machining (WEDM). The material utilized in this study was magnesium alloy. The investigation also considered the input parameters associated with the Wire Electrical Discharge Machining (WEDM) process, specifically the pulse duration and peak current.
Technical Paper

Machinability Studies and the Evolution of Hybrid Artificial Intelligent Tools for Advanced Machining of Nickel Alloy for Aerospace Applications

2023-11-10
2023-28-0065
Nickel-based superalloys are frequently adopted in various engineering applications, such as the production of food processing equipment, aerospace parts, and chemical processing equipment. Because of higher strength and thermal conductivity, they are often regarded as difficult-to-machine materials in certain processes. Various methods were evolved for machining the hard materials such as Nickel-based superalloys more effective. One of these is wire electrical discharge machining. In this paper, we will discuss the development of an artificial neural network model and an adaptive neuro-fuzzy inference system that can be used to predict the future performance of Wire Electrical Discharge Machining (WEDM). The paper uses the Taguchi and Analysis of Variance (ANOVA) design techniques to analyze the model’s variable input. It aims to simulate the various characteristics of the process and its predicted values.
Technical Paper

Investigational Analysis on Wire Electrical Discharge Machining of Aluminium Based Composites by Taguchi’s Method

2023-11-10
2023-28-0075
A wide range of engineering domains, such as aeronautical, automobiles, and marine, rely on the use of Metal Matrix Composites (MMC). Due to the excellent properties, such as hardness and strength, Aluminum base MMC are generally adopted in various uses. Due to the increasing number of reinforcement materials being added to the MMC, its properties are expected to improve. In this exploratory analysis, an effort was given to develop a new aluminium-based MMC. The analysis of the machinability of the composite was also performed. The process of creating a new MMC using a stir casting technique was carried out. It resulted in a better and more reinforced composite than its base materials. The reinforcement materials were fabricated using different weight combinations and process parameters, such as the temperature and duration required to stir. Due to the improved properties of the composite, the traditional machining method is not feasible for machining of these materials.
Technical Paper

Taguchi’s Approach to Wire Electrical Discharge Machining of Magnesium Alloy AZ31B

2023-11-10
2023-28-0136
One of the most common types of lightweight materials used in aerospace is magnesium alloy. It has a high strength-to-weight ratio and is ideal for various applications. Due to its corrosion resistance, it is commonly used to manufacture of fuselages. Unfortunately, the conventional methods of metal cutting fail to improve the performance of magnesium alloy. One amongst the most common methods used for making intricate shapes in harder materials is through Wire-Electro-Discharge (WEDM). In this study, we have used magnesium alloy as the work material. The independent factors were selected as pulse duration and peak current. The output parameters of the process are the Surface Roughness (SR) and the Material Removal Rate (MRR). Through a single aspect optimization technique, Taguchi was able to identify the optimal combination that would improve the effectiveness of the WEDM process.
Technical Paper

Influence of Various Parameters of Turning Low Carbon Steel with M2 HSS Tool Using Minimum Quantity Lubrication

2022-12-23
2022-28-0533
Turning is a widely used manufacturing process in mechanical machining industries, while the cost associated with this process is high due to the cost involved in changing tools or tool regrinding. All the parameters of turning, like feed rate, cutting speed, and depth of cut, substantially impact the tool wear, which subsequently reduces tool life. Cooling methods like flooding, Minimum Quantity Lubrication (MQL), etc., are incorporated to minimise these effects on the tool and workpiece interface. When using these cooling techniques, the process parameters involved play vital roles in increasing the effectiveness. This paper focuses on the effects of machining parameters on the tool and the workpiece quality. Experiments were conducted to study the impact of various input parameters of the turning process on the tool tip temperature, cutting forces, and tool wear, ultimately affecting the tool's life.
Technical Paper

Experimental Investigation on the Tensile and Wear Characteristics of Journal Bearing Materials Used in Automobile Engine Application

2022-12-23
2022-28-0518
The objective of the bearing materials is to reduce the friction and enhance the movement between two parts. The main aim of our project is to focus on the wear, tensile and fatigue characteristics of engine journal bearing material. The engine bearings are mainly classified into main bearings and journal bearings. The journal bearing material was made by cladding process. It is formed in two types of shape one is circular and the other is on dog bone shape. Both of the specimens were made as per ASTM standards. The material on which the test specimen was made on steel platted copper material and Aluminium 1020. The circular shape specimen was subjected to wear test on Pin on Disc method and the wear calculations were calculated in microns. The dog bone shape specimen was tested on tensile strength on Universal Testing Machine (UTM). The stress strain curve was obtained. The specimen will subject to fatigue test by using of fatigue test machines.
Technical Paper

An Investigation on Corrosion and Wear Behavior of Automotive Materials

2021-10-01
2021-28-0238
The energy demand of the world is keep increasing, major share of the demand is compensated by non-renewable fossil fuels. Automotive sector consumes a huge amount of fossil fuels, as majority of the segment use internal combustion as a prime mover. In the present era researches are carried to figure out the suitable replacements for fossil fuels to attain sustainable environment. One of the major challenge and keen interest of everyone is on waste management, several researches are aimed to bridge the gap between energy demand and waste management. In such way biofuels came into limelight a decade ago, still numerous works are carried in the area for creating socio economic friendly environment. Enormous studies have been carried out to assess their performance in the internal combustion engines, here in the present study performance of the working material against the biodiesel is studied.
Technical Paper

Methodology to Simulate Adsorption and Desorption Phenomena of Gasoline Fuel Vapour in Activated-Carbon Canister to Meet Post-EU6 and US EPA Global Emission Norms

2021-09-15
2021-28-0131
This paper covers the mathematical modeling of governing equations for the coupled heat and mass transfer phenomena during adsorption and desorption. Also the main focus is given on the methodology for numerical simulation for solving these partial differential equations for carbon canister. A comprehensive literature review is presented to summarize the target requirements of allowed evaporative emission level of gasoline vapour in grams per day based on global standards like, EU6, EPA stage II enhanced, CARB LEVII, PZEV and SULEV. In order to meet these stringent emission norms, presence of carbon canister is mandatory. The simulation results are compared for the gasoline vehicle application at various climatic temperature conditions in India, in which the canister sizing vs allowable emission targets are summarized.
Technical Paper

Design and Analysis of a Muffler for Engine Exhaust Noise and Heat Reduction

2021-09-15
2021-28-0128
Engine exhaust noise and heat are significant sources of emissions in the environment. Engine exhaust systems are designed to minimize noise and heat while maintaining the necessary db levels and sound quality, as well as emissions in accordance with environmental regulations. Mufflers remain an integral portion of the IC engine arrangement are widely used in IC engine exhaust arrangements to reduce sound generated by engine exhaust gases as well as to reduce heat. The most efficient way to reduce noise and heat is to install a exhaust muffler in the engine tail pipe. The aim of our project is to design and analysis an engine exhaust muffler for reducing exhaust noise and heat. Appropriate design and analysis would aid in the reduction of noise and heat, while at the same time, the backpressure generated by the muffler should not affect the engine's efficiency. 3D models are developed in Solid Works software before being exported to ANSYS FLUENT CFD software for review in this report.
Technical Paper

Braking System for ATV

2020-10-05
2020-01-1611
Design and simulation analysis of braking system for ATV is carried out with the assistance of Ansys and MATLAB. Heat generated increases the temperature of the disc brake at the rubbing surface resulting in thermal stresses in the components of the braking system. Static, structural, thermal, computational flow dynamics, vibrational & fatigue behavior of ventilated brake disc rotor, hub and upright are analyzed. Stainless Steel, SS-410 material configuration has been considered for disc brake rotor and results obtained are analyzed in terms of performance, longevity and efficiency. Braking efficiency and stopping distance curve are analyzed from their characteristics plot. Vibrational behavior, structural behavior, thermal behavior, performance efficiency, flow behavior of ventilated disc brake rotor can be easily depicted with respect to bump and droop during acceleration, high climb and maneuverability. Ventilated disc brake Rotor with outer diameter of 220 mm is used.
Technical Paper

Noise Absorption Behavior of Aluminum Honeycomb Composite

2020-09-25
2020-28-0453
Natural fibers are one of the major ways to improve environmental pollution. In this study experimental investigation and simulation of honeycomb filled with cotton fabric, wood dust and polyurethane were carried out. This study determines the potential use of cotton fabric, wood dust as good sound absorbers. Automotive industries are looking forward to materials that have good acoustic properties, lightweight, strong and economical. This study provides a better understanding of sound-absorbing material with other mechanical properties. With simulation and experimental results, validation of works provides a wider industrial application for the interior of automotive industries including marine, aviation, railway industry and many more.
Technical Paper

Investigation on Design and Analysis of Passenger Car Body Crash-Worthiness in Frontal Impact Using Radioss

2020-09-25
2020-28-0498
Increasing advancement in automotive technologies ensures that many more lightweight metals become added to the automotive components for the purpose of light weighting and passenger safety. The accidents are unexpected incidents most drivers cannot be avoided that trouble situation. Crash studies are among the most essential methods for enhancing automobile safety features. Crash simulations are attempting to replicate the circumstances of the initial crash. Frontal crashes are responsible for occupant injuries and fatalities 42% of accidents occur on frontal crash. This paper aims at studying the frontal collision of a passenger car frame for frontal crashes based on numerical simulation of a 35 MPH. The structure has been designed to replicate a frontal collision into some kind of inflexible shield at a speed of 15.6 m/s (56 km/h). The vehicle’s exterior body is designed by CATIA V5 R20 along with two material properties to our design.
Technical Paper

Characterization of AlSi10Mg Alloy Produced by DMLS Process for Automotive Engine Application

2019-10-11
2019-28-0134
Considerable weight of an automobile is constituted by the engine and there is scope for improvement in fuel efficiency and emission control through optimization of weight in the engine. In this work, AlSi10Mg alloy produced by the direct metal laser sintering (DMLS) is suggested for engine application which is a lightweight aluminum alloy. Mechanical properties like tensile strength, compressive strength, and hardness of both cast and DMLS manufactured alloy are compared followed by analysis of SEM images of tensile test fractured surfaces. Reciprocating wear test is carried out for one lakh cycles at 125°C temperature with SAE 40 grade oil as lubricant. Co-efficient of friction (COF), wear rate of the cast and DMLS manufactured samples are compared. Wear patterns are analyzed using SEM images of the wear tracks.
X