Refine Your Search

Topic

Author

Search Results

Technical Paper

Road Profile Reconstruction Based on Recurrent Neural Network Embedded with Attention Mechanism

2024-04-09
2024-01-2294
Recognizing road conditions using onboard sensors is significant for the performance of intelligent vehicles, and the road profile is a widely accepted representation both in the temporal and frequency domains, greatly influencing driving quality. In this paper, a recurrent neural network embedded with attention mechanisms is proposed to reconstruct the road profile sequence. Firstly, the road and vehicle sensor signals are obtained in a simulated environment by modeling the road, tire, and vehicle dynamic system. After that, the models under different working conditions are trained and tested using the collected data, and the attention weights of the trained model are then visualized to optimize the input channels. Finally, field experiments on the real vehicle are conducted to collect real road profile data, combined with vehicle system simulation, to verify the performance of the proposed method.
Technical Paper

Technical Challenges with on Board Monitoring

2024-04-09
2024-01-2597
The proposed Euro 7 regulation includes On Board Monitoring, or OBM, to continuously monitor vehicles for emission exceedances. OBM relies on feedback from existing or additional sensors to identify high emitting vehicles, which poses many challenges. Currently, sensors are not commercially available for all emissions constituents, and the accuracy of available sensors is not capable enough for in use compliance determination. On board emissions models do not offer enough fidelity to determine in use compliance and require new complex model innovation development which will be extremely complicated to implement on board the vehicle. The stack up of multi-component deterioration leading to an emissions exceedance is infeasible to detect using available sensors and models.
Technical Paper

Advanced Engine Cooling System for a Gas-Engine Vehicle Part I: A New Coolant Flow Control During Cold Start

2024-04-09
2024-01-2414
In this paper, we present a novel algorithm designed to accurately trigger the engine coolant flow at the optimal moment, thereby safeguarding gas-engines from catastrophic failures such as engine boil. To achieve this objective, we derive models for crucial temperatures within a gas-engine, including the engine combustion wall temperature, engine coolant-out temperature, engine block temperature, and engine oil temperature. To overcome the challenge of measuring hard-to-measure signals such as engine combustion gas temperature, we propose the use of new intermediate parameters. Our approach utilizes a lumped parameter concept with a mean-value approach, enabling precise temperature prediction and rapid simulation. The proposed engine thermal model is capable of estimating temperatures under various conditions, including steady-state or transient engine performance, without the need for extra sensors.
Technical Paper

Electric vehicle battery health aware DC fast-charging recommendation system

2024-04-09
2024-01-2604
DC fast charging (DCFC) also referred to as L3 charging, is the fastest charging technology to replenish the drivable range of an electric vehicle. DCFC provides the convenience of faster charging time compared to L1 and L2 at the expense of potentially increased battery health degradation. It is known to accelerate battery capacity fade leading to reduced range and lifetime of the EV battery. While there are active efforts and several means to reduce the downsides of DCFC at cell chemistry level, this trade-off is still an important consideration for most battery cells in automotive propulsion applications. Since DCFC is a customer driven technology, informing drivers of the trade-off of each DCFC event can potentially result in better outcomes for the EV battery life. Traditionally, the driver is advised to limit DCFC events without providing quantifiable metrics to inform their decisions during EV charging.
Technical Paper

Sound Transmission Loss through Front of Dash and Instrumental Panel

2024-04-09
2024-01-2349
The subsystem of front of dash (FOD) and instrument panel (IP) is a critical path to isolate the powertrain noise and road noise for vehicles. This subsystem mainly consists of sheet metal, dash mats, IP, and the components inside IP such as HVAC and wiring harness. To achieve certain level of cabin quietness, the sound transmission loss performance of this subsystem is usually used as a quantifier. In this paper, the sound transmission loss through the FOD and IP is investigated up to 10kHz, through both acoustic testing and numerical simulation. In the acoustic testing, the subsystem is cut from a vehicle and installed on the wall of two-rooms STL testing suite, with source room being reverberant and receiver room being anechoic. In the testing, various scenarios are measured to understand the contributions from different components.
Technical Paper

Development of Robust Traction Power Inverter Residing in Integrated Power Electronics for Ultium Electric Vehicles

2024-04-09
2024-01-2211
General Motors (GM) is working towards a future world of zero crashes, zero emissions and zero congestion. It’s “Ultium” platform has revolutionized electric vehicle drive units to provide versatile yet thrilling driving experience to the customers. Three variants of traction power inverter modules (TPIMs) including a dual channel inverter configuration are designed in collaboration with LG Magna e-Powertrain (LGM). These TPIMs are integrated with other power electronics components inside Integrated power electronics (IPE) to eliminate redundant high voltage connections and increase power density. The developed power module from LGM has used state-of-the art sintering technology and double-sided cooled structure to achieve industry leading performance and reliability. All the components are engineered with high level of integration skills to utilize across TPIM variants.
Technical Paper

A Renewed Look at Centralized vs. Decentralized Actuation for Braking Systems

2023-11-05
2023-01-1865
De-centralized brake actuation – that is, brake systems that incorporate individual actuators at each wheel brake location to both provide the apply energy and the modulation of braking force – is not a new area of study. Typically realized in the form of electro-mechanical brake calipers or drum brakes, or as “single corner” hydraulic actuators, de-centralized actuation in braking systems has already been deployed in production on General Motor EV1 Electric Vehicle (1997) in the form of electric drum brakes and has been studied continually by the automotive industry since then. It is frequently confused with “brake by wire,” and indeed practical implementations of de-centralized actuation are a form of brake by wire technology. However, with millions of vehicles on the road already with “brake by wire” systems - the vast majority of which have centralized brake actuation – the future of “brake by wire” is arguable settled.
Journal Article

Analysis and Validation of Current Ripple Induced PWM Switching Noise and Vibration for Electric Vehicles

2023-05-08
2023-01-1100
Pulse Width Modulation or PWM has been widely used in traction motor control for electric propulsion systems. The associated switching noise has become one of the major NVH concerns of electric vehicles (EVs). This paper presents a multi-disciplinary study to analyze and validate current ripple induced switching noise for EV applications. First, the root cause of the switching noise is identified as high frequency ripple components superimposed on the sinusoidal three-phase current waveforms, due to PWM switching. Measured phase currents correlate well with predictions based on an analytical method. Next, the realistic ripple currents are utilized to predict the electro-magnetic dynamic forces at both the motor pole pass orders and the switching frequency plus its harmonics. Special care is taken to ensure sufficient time step resolution to capture the ripple forces at varying motor speeds.
Technical Paper

Cylindrical Li-Ion Cell Crush CAE Capability in Automotive Application

2023-04-11
2023-01-0509
The world is moving towards E-mobility solutions and Battery Electric Vehicles (BEVs) are the main enabler towards it. Li-ion cells are the fundamental building block of any BEVs. There are three common types of Li-ion cell design i.e., cylindrical cells, Prismatic Cells and Pouch cells. Ensuring safety of BEVs are critical to gain customer trust and acceptance over Internal Combustion Engine (ICE) vehicles. EV fire is found to be one of the major concerns related to using higher energy batteries. During a crash event, Post-Crash Electrical Integrity of the BEV is to be ensured and hence primary focus is on mitigation of Li-ion cell internal short circuit. It has been seen in prior published articles that cell internal short circuit can be triggered by physical intrusion of cell. This paper primarily focusses on simulating the mechanical behavior of cylindrical cell under various crush conditions.
Technical Paper

A Road Roughness Estimation Method based on PSO-LSTM Neural Network

2023-04-11
2023-01-0747
The development of intelligent and networked vehicles has enhanced the demand for precise road information perception. Detailed and accurate road surface information is essential to intelligent driving decisions and annotation of road surface semantics in high-precision maps. As one of the key parameters of road information, road roughness significantly impacts vehicle driving safety and comfort for passengers. To reach a rapid and accurate estimation of road roughness, in this study, we develop a neural network model based on vehicle response data by optimizing a long-short term memory (LSTM) network through the particle swarm algorithm (PSO), which fits non-linear systems and predicts the output of time series data such as road roughness precisely. We establish a feature dataset based on the vehicle response time domain data that can be easily obtained, such as the vehicle wheel center acceleration and pitch rate.
Technical Paper

Driveline Control Influence when ABS Active

2023-04-11
2023-01-0662
The interaction between driveline control and anti-lock braking system (ABS) control in electric vehicles (EV) was investigated based on multi-body dynamics (MBD) model and control model co-simulation. Two primary driveline control algorithms, active damping control and wheel flare control, were integrated with ABS control in Simulink model and the influence on ABS control was studied. The event for high mu to low mu transition was simulated. When ABS control is active on low mu surface, the vehicle shows large wheel slip and long duration time before wheel speed returns to stable control. This performance could be improved with activating driveline control. Deceleration uniformity metric shows that active damping control has very small effect when ABS control becomes stable after passing through the high mu to low mu transition period. Driveline damping control can help to reduce vibration, but it is difficult to find satisfied tuning for wheel speed performance.
Journal Article

Role of Worst-Case Operating Scenario and Component Tolerance in Robust Automotive Electronic Control Module Design

2023-04-11
2023-01-0849
Use of electronic systems in the vehicles is increasing day by day. As Electronic Control Modules (ECMs) become a large part of the vehicle, automotive designers need to take diligent decision of selecting electrical and electronic components. Selecting these components for ECM depends on four major factors: meeting stringent vehicle requirements, performance over the lifespan, robustness/reliability and cost. There is always an urge of reducing the cost of the ECM, but robustness of the controller module must not be compromised. One electrical or electronic component failure or false fault detection not only increases warranty cost but may also stall the vehicle, and interrupts customer’s daily routine creating dissatisfaction. This paper emphasizes on the importance of understanding worst-case operating scenarios considering component tolerances over the operating range, datasheet, and impact of tolerances on performance and fault detection.
Technical Paper

Detection and Diagnosis of Speed Sensor Air Gap Change Fault

2022-10-28
2022-01-7058
Aiming at the fault that the speed signal of the automatic transmission output shaft Hall-type speed sensor fluctuates abnormally due to the change of the air gap, the method of fault detection and diagnosis is proposed. Firstly, a limited low-pass filter module was designed according to the characteristics of the fault, and a good filter effect is achieved. Secondly, by comparing the signals before and after filtering, a residual generator is designed, and an adaptive dynamic threshold is designed by analyzing the causes and influencing factors of the residual, which can configure a reliable and effective threshold for the generated residual in real time, which improves the fault identification robustness and effectiveness. Then, a fault debounce method is designed to avoid frequent false alarms of occasional faults. Finally, simulation verification proves the effectiveness of the method.
Technical Paper

An Automated Procedure for Implementing Steer Input during Ditch Rollover CAE Simulation

2022-10-05
2022-28-0365
Vehicle manufacturers conduct tests to develop crash sensing system calibrations. Ditch fall-over is one of a suite of laboratory tests used to develop rollover sensing calibrations that can trigger deployment of safety devices like roof rail airbags and seat belt pretensioners. The ditch fall-over test simulates a flat road followed by a ditch on one side of the road. The vehicle heads into the ditch and the driver applies swift steer input once the ditch slope is sensed. Typically, the steer input is applied when the two down-slope wheels on the ditch side enter the ditch. Multi-Body Dynamics (MBD) software can be used for virtual simulation of these test events. Conventionally in simulations, the vehicle-model is run without steer input and the marking line crossing time is observed/manually recorded from observation of simulation video. This recorded time is used to apply the steer input and the full event is then re-simulated.
Technical Paper

Advanced Continuous Sensing Technology for Hydraulic Brake Fluid

2022-09-19
2022-01-1185
The Continuous Fluid Level and Quality Indicator (CFLQI) technology is focused on increasing the sampling frequency of brake fluid reservoir volume and detecting specific brake fluid contaminants. CFLQI targets to improve diagnostics detection range and resulting degraded vehicle operation strategies by increasing sensitivity to brake fluid loss and the addition of a fluid quality feature. The theory of CFLQI is to improve future autonomous and highly automated vehicle performance, both of which will have reduced driver input and service schedules, by providing earlier fluid level and fluid health warnings. The two technologies selected to prove theory of operation were ultra-sonic sensor and capacitive sense element technology. Both technologies show initial capability to meet fluid sensing targets with system level ASIL D ASIC design. The CFLQI compliments and improves upon current technology of brake pad wear sensors, leak detection diagnostics and brake fluid level monitoring.
Journal Article

Re-imagining Brake Disc Thermal Fatigue Testing to Relate to Field Use

2022-09-19
2022-01-1163
The validation of brake discs has remained, to this day, heavily reliant on “Thermal Abuse” or “Thermal Cracking” type testing, with many procedures so dated that most engineers active in the industry today cannot even recall the origin of the test. These procedures - of which there are many variants - all share the trait of greatly accelerating durability testing by performing repeated high power (high speed and high deceleration) brake applies to drive huge temperature gradients and internal stress, and often allowing the disc to get very hot, to where the strength of the material from which the disc is constructed is significantly degraded. There is little debate about whether these procedures work; by and large disc durability issues in the field are extremely rare.
Journal Article

Estimating Brake Pad Life in Regenerative Braking Intensive Vehicle Applications

2022-09-19
2022-01-1161
Regenerative braking without question greatly impacts brake pad service life in the field, in most cases extending it significantly. Estimating its impact precisely has not been an overriding concern - yet - due in part to the extensive sharing of brake components between regen-intensive battery-electric and hybrid vehicles, and their more friction-brake intensive internal combustion engine powered sibling. However, a multitude of factors are elevating the need for a more accurate estimation, including the emerging of dedicated electric vehicle architectures with opportunities for optimizing the friction brake design, a sharp focus on brake particulate emissions and the role of regenerative braking, a need to make design decisions for features such as corrosion protection for brake pad and pad slide components, and the emergence of driver-facing features such as Brake Pad Life Monitoring.
Journal Article

Dual Transfer Function Approach to Analyze Low Frequency Brake Noise without Comprehending Friction Behavior in Advance

2022-09-19
2022-01-1176
Analyzing low frequency brake noise (< 300Hz) has been challenging due to the difficulty associated with calculating dynamic friction behavior and its multiple structure-borne noise transfer paths. In theory, it is possible to simulate sound pressure level inside the cabin by calculating a transfer function between friction excitation, which is on the interface between rotor and pads, and cabin acoustic response, and by multiplying dynamic friction force at the rotor-pad interface to that transfer function. However, calculating the dynamic friction forces when brake noise occurs has been one of the most challenging research topics in the brake community. This paper describes a novel concept to simulate sound pressure level inside the cabin without knowing the dynamic friction forces at the rotor-pad interface in advance.
Technical Paper

Aftertreatment Layouts Evaluation in the Context of Euro 7 Scenarios Proposed by CLOVE Abstract

2022-06-14
2022-37-0008
Euro 7/VII regulations are currently under discussion and are expected to be the last big regulatory step in Europe. From available documentation, it is clear the aim of further regulating the extended conditions of use which are still responsible of high emission events (e. g. cold start or altitude) as well as regulating secondary emissions such as NH3, N2O, CH4, Aldehydes (HCHO). Even if not completely fixed yet, the EU7 limits will be challenging for internal combustion engines and even more for Diesel. Despite a consistent reduction of market share, Diesel engines are expected to remain a significant portion in certain sectors such as Heavy duty (HD) and Light-commercial vehicle (LCV) for some decades. In order to reach the new limits being proposed, besides minimizing engine-out emissions, Diesel powertrain will need an aftertreatment system able to work at very high efficiency right after engine start and in almost every working and environmental condition.
Technical Paper

Physics-Guided Sparse Identification of Nonlinear Dynamics for Prediction of Vehicle Cabin Occupant Thermal Comfort

2022-03-29
2022-01-0159
Thermal cabin comfort is the largest consumer of battery energy second only to propulsion in Battery Electric Vehicles (BEV’s). Accurate prediction of thermal comfort in the vehicle cabin with fast turnaround times will allow engineers to study the impact of various thermal comfort technologies and develop energy efficient Heating, Ventilation and Air Conditioning (HVAC) systems. In this study a novel data-driven model based on physics-guided Sparse Identification of Nonlinear Dynamics (SINDy) method was developed to predict Equivalent Homogeneous Temperature (EHT), Mean Radiant Temperature (MRT) and cabin air temperature under transient conditions and drive cycles. EHT is a recognized measure of the total heat loss from the human body that can be used to characterize highly non-uniform thermal environments such as a vehicle cabin. The SINDy model was trained on drive cycle data from Climatic Wind Tunnel (CWT) for a representative Battery Electric Vehicle.
X