Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

GRC-Net: Fusing GAT-Based 4D Radar and Camera for 3D Object Detection

2023-12-31
2023-01-7088
The fusion of multi-modal perception in autonomous driving plays a pivotal role in vehicle behavior decision-making. However, much of the previous research has predominantly focused on the fusion of Lidar and cameras. Although Lidar offers an ample supply of point cloud data, its high cost and the substantial volume of point cloud data can lead to computational delays. Consequently, investigating perception fusion under the context of 4D millimeter-wave radar is of paramount importance for cost reduction and enhanced safety. Nevertheless, 4D millimeter-wave radar faces challenges including sparse point clouds, limited information content, and a lack of fusion strategies. In this paper, we introduce, for the first time, an approach that leverages Graph Neural Networks to assist in expressing features from 4D millimeter-wave radar point clouds. This approach effectively extracts unstructured point cloud features, addressing the loss of object detection due to sparsity.
Technical Paper

Hollow Shaft Liquid Cooling Method for Performance Improvement of Permanent Magnet Synchronous Motors Used in Electric Vehicles

2023-09-22
2023-01-5067
Operating condition of rotor embedded magnet materials for permanent magnet synchronous motor (PMSM) critically affect electric vehicle (EV) range and dynamic characteristics. The rotor liquid cooling technique has a deep influence on PMSM performance improvement, and begin to be studied and applied increasingly in EV field. Here, the fluid, thermal, and electromagnetic characteristics of motor with and without hollow-shaft cooling are researched comprehensively based on 100 kW PMSM with housing water jacket (HWJ) and hollow-shaft rotor water jacket (SWJ). The solid models are constructed considering temperature-dependent power loss and anisotropic thermal conductivity. After the fluid models are set up by using Reynolds stress model (RSM), conjugate heat transfer is conducted through computational fluid dynamics (CFD) simulation, and is verified by real PMSM test bench experiments.
Technical Paper

Research on Regenerative Braking Control Strategy under High Charge State Using Prescribed Performance Prediction Control

2022-10-28
2022-01-7041
To reduce the energy consumption level of electric vehicles, the working range of the regenerative braking system will gradually expand to the high state of charge of the battery. The time delay in the control signal transmission path of the high state of charge regenerative braking control process will affect the regenerative braking. At the same time, regenerative braking under a high state of charge puts forward higher requirements for the control accuracy of regenerative current. In the research of this paper, the motor model, battery model, and vehicle dynamics model are firstly established by using MATLAB/Simulink, and the dynamic relationship between regenerative current and regenerative braking torque is analyzed at the same time. Considering the system time delay, this paper proposes a high-charge regenerative braking control strategy (SPPC) that combines Smith prediction and prescribed performance control.
Journal Article

An Experimental Study of the Effects of a Nonlinear Store on the Steady-State Dynamics of a Test Airplane

2021-08-31
2021-01-1117
Local nonlinearities can affect the global dynamics of their linear host structures. In the context of fixed-wing aircraft, failure of store mounting can result in strong local nonlinearities. In this work, we experimentally mimic store mounting failure conditions in a model airplane subject to harmonic excitation. Two identical stores are mounted under the wings and are placed symmetrically opposite each other. The configuration where both stores are “locked”, i.e., mounting is very stiff, serves as the baseline linear system. The second configuration involves unlocking one of the stores, enabling a geometrically nonlinear flexure connection between the unlocked store and the wing. The flexure lets the store interact with the first flexible mode of the airplane, resulting in large relative displacements between the store and wing. In addition, the configuration allows for vibro-impacts between the wing and store.
Technical Paper

Research on Performance of Pulsed Twin-Fluid Injector and Its Application on a Spark Ignition UAV Engine

2021-04-06
2021-01-0651
The principal objective of the present work is to investigate the fundamental characteristics of a commercially available outwardly opening twin-fluid injector, which utilizes air-assisted atomization principle to attain pulse-type injection of fuel-air mixture. The electromagnetic characteristics of this injector were simulated and the effects of dominating parameters on the electromagnetic force to drive injector were ascertained. On that basis, this paper elaborates on the fundamental characteristics of air-assisted spray using gasoline and kerosene with the employment of two types of optical testing techniques. The spray morphological evolution under varied fuel injection durations and ambient pressures were captured with high-speed shadowgraph thus the corresponding external macroscopic characteristics were obtained and further compared. Spray droplet velocity and diameter at fixed monitoring location were measured by using PDPA (Phase Doppler Particle Analyzer).
Technical Paper

Numerical Simulation and Optimization for Combustion of an Opposed Piston Two-Stroke Engine for Unmanned Aerial Vehicle (UAV)

2020-04-14
2020-01-0782
An opposed piston two-stroke engine is more suitable for use in an unmanned aerial vehicle because of its small size, excellent self-balancing, stable operation, and low noise. Consequently, in this study, based on experimental data for a prototype opposed piston two-stroke engine, numerical simulation models were established using GT-POWER for 1D simulation and AVL-FIRE for 3D CFD simulation. The mesh grid and solver parameters for the numerical model of the CFD simulation were determined to guarantee the accuracy of the numerical simulation, before studying and optimizing the ventilation efficiency of the engine with different dip angles. Furthermore, the fuel spray and combustion were analyzed and optimized in details.
Journal Article

Visualization Study of the Relationship between the Orientation of Tube and the Flow Regimes Near the Expansion Valve

2020-04-14
2020-01-1256
Several types of noise exist in automobiles. The flow-induced noise in the expansion device can be very disturbing since the expansion device is located near the occupants. In many studies, the flow-induced noise is found to be mitigated when the orientation of the tube is changed. However, no study explores the reason why flow-induced noise changes when the orientation of the tube is changed. The flow-induced noise varies along with the flow regimes near the expansion devices. In this paper, an experimental based research is used to study how the tube orientation changes the flow regimes under the same operating conditions. A pumped R134a system with transparent tubes (1/4-inch ID) is used to visualize the flow regimes near the manual expansion valve. The transparent tube is a continuous connection of horizontal tubes, 45° inclined tubes, and vertical tubes.
Technical Paper

Research of the High Altitude Control Strategy of the Piston Aero-engine Using Two-stage Turbocharger Coupled with single Supercharging System

2019-12-19
2019-01-2211
Aiming at the high altitude operation problems for piston-type aero-engines and to improve the practical ceiling and high altitude dynamic performance, this thesis analyzes a controllable three-stage composite supercharging system, using a two-stage turbocharger coupled supercharger method. The GT-Power simulation model of a four-cylinder boxer engine was established, and the control strategy of variable flight height was obtained. The simulation research of engine performance from 0 to 20,000 meters above sea level has been carried out, which shows that the engine power is at the same level as the plain condition, and it could still maintain 85.28 percent of power even at the height of 20,000 meters, which meets the flight requirements of the aircraft.
Technical Paper

Experimental Aerodynamic Simulation of Glaze Ice Accretion on a Swept Wing

2019-06-10
2019-01-1987
Aerodynamic assessment of icing effects on swept wings is an important component of a larger effort to improve three-dimensional icing simulation capabilities. An understanding of ice-shape geometric fidelity and Reynolds and Mach number effects on iced-wing aerodynamics is needed to guide the development and validation of ice-accretion simulation tools. To this end, wind-tunnel testing was carried out for 8.9% and 13.3% scale semispan wing models based upon the Common Research Model airplane configuration. Various levels of geometric fidelity of an artificial ice shape representing a realistic glaze-ice accretion on a swept wing were investigated. The highest fidelity artificial ice shape reproduced all of the three-dimensional features associated with the glaze ice accretion. The lowest fidelity artificial ice shapes were simple, spanwise-varying horn ice geometries intended to represent the maximum ice thickness on the wing upper surface.
Journal Article

Additional Comparison of Iced Aerodynamic Measurements on a Swept Wing from Two Wind Tunnels

2019-06-10
2019-01-1986
Artificial ice shapes of various geometric fidelity were tested on a wing model based on the Common Research Model. Low Reynolds number tests were conducted at Wichita State University’s Walter H. Beech Memorial Wind Tunnel utilizing an 8.9% scale model, and high Reynolds number tests were conducted at ONERA’s F1 wind tunnel utilizing a 13.3% scale model. Several identical geometrically-scaled ice shapes were tested at both facilities, and the results were compared at overlapping Reynolds and Mach numbers. This was to ensure that the results and trends observed at low Reynolds number could be applied and continued to high, near-flight Reynolds number. The data from Wichita State University and ONERA F1 agreed well at matched Reynolds and Mach numbers. The lift and pitching moment curves agreed very well for most configurations.
Journal Article

Experimental Aerodynamic Simulation of a Scallop Ice Accretion on a Swept Wing

2019-06-10
2019-01-1984
Understanding the aerodynamic impact of swept-wing ice accretions is a crucial component of the design of modern aircraft. Computer-simulation tools are commonly used to approximate ice shapes, so the necessary level of detail or fidelity of those simulated ice shapes must be understood relative to high-fidelity representations of the ice. Previous tests were performed in the NASA Icing Research Tunnel to acquire high-fidelity ice shapes. From this database, full-span artificial ice shapes were designed and manufactured for both an 8.9%-scale and 13.3%-scale semispan wing model of the CRM65 which has been established as the full-scale baseline for this swept-wing project. These models were tested in the Walter H. Beech wind tunnel at Wichita State University and at the ONERA F1 facility, respectively. The data collected in the Wichita St.
Technical Paper

A Novel Dual Nonlinear Observer for Vehicle System Roll Behavior with Lateral and Vertical Coupling

2019-04-02
2019-01-0432
The study of vehicle coupling state estimation accuracy especially in observer-based vehicle chassis control for improving road handling and ride comfort is a challenging task for vehicle industry under various driving conditions. Due to a large amount of life safety arising from vehicle roll behavior, how to precisely acquire vehicle roll state and rapidly provide for the vehicle control system are of great concern. Simultaneously, uncertainty is unavoidable for various aspects of a vehicle system, e.g., varying sprung mass, moment of inertia and position of the center of gravity. To deal with the above issues, a novel dual observer approach, which combines adaptive Unscented Kalman Filter (AUKF) and Takagi-Sugeno (T-S), is proposed in this paper. A full-car nonlinear model is first established to describe vehicle lateral and vertical coupling roll behavior under various road excitation.
Technical Paper

Response Decoupling Method in Mount Design with Emphasis on Transient Load Conditions

2019-01-18
2018-01-5046
This research examined the focused design, elastic design, energy decoupling, and torque roll axis (TRA) decoupling methods for mount optimization design. Requiring some assumptions, these methods are invalid for some load conditions and constraints. The linearity assumption is advantageous and simplifies both design and optimization analysis, facilitating engineering applications. However, the linearity is rarely seen in real-world applications, and there is no practical method to directly measure the reaction forces in the three locally orthogonal directions, preventing validation of existing methods by experimental results. For nonlinear system identification, there are additional challenges such as unobservable internal variables and the uncertainty of measured data.
Technical Paper

The Effect of In-Cylinder Temperature on the Ignition Initiation Location of a Pre-Chamber Generated Hot Turbulent Jet

2018-04-03
2018-01-0184
Ignition location is one of the important factors that affect the thermal efficiency, exhaust emissions and knock sensitivity in premixed-charge ignition engines. However, the ignition initiation locations of pre-chamber generated turbulent jet ignition, which is a promising ignition enhancement method, are not clearly understood due to the complex physics behind it. Motivated by this, the ignition initiation location of a transient turbulent jet in a constant volume combustor is analyzed by the use of computational fluid dynamics (CFD) simulations. In the CFD simulations of this work, commercial codes KIVA-3 V release 2 and an in-house-developed chemical solver with a detailed mechanism for H2/air mixtures are used. Comparisons are performed between simulated and experimental ignition initiation locations, and they agree well with one another. A detailed parametric study of the influence of in-cylinder temperature on the ignition initiation location is also performed.
Technical Paper

Fuzzy Observer for Nonlinear Vehicle System Roll Behavior with Coupled Lateral and Vertical Dynamics

2018-04-03
2018-01-0559
The study of vehicle state estimation performance especially on the aspect of observer-based control for improving vehicle ride comfort and road handling is a challenging task for vehicle industry. Since vehicle roll behavior with various road excitations act an important part of driving safety, how to accurately obtain vehicle state under various driving scenes are of great concern. However, previous researches seldom consider coupling relation between vehicle vertical and lateral response with steering input under various road excitation. To address this issue, comprehension analyses on vehicle roll state estimation with coupled input are present in this paper. A full-car nonlinear Takagi-Sugeno (T-S) fuzzy model is first created to describe vehicle lateral and vertical coupling dynamics.
Technical Paper

Road Classification Based on System Response with Consideration of Tire Enveloping

2018-04-03
2018-01-0550
This paper presents a road classifier based on the system response with consideration of the tire enveloping. The aim is to provide an easily applicable yet accurate road classification approach for automotive engineers. For this purpose, tire enveloping effect is firstly modeled based on the flexible roller contact (FRC) theory, then transfer functions between road input and commonly used suspension responses i.e. the sprung mass acceleration, unsprung mass acceleration, and rattle space, are calculated for a quarter vehicle model. The influence of parameter variations, vehicle velocity, and measurement noise on transfer functions are comprehensively analyzed to derive the most suitable system response thereafter. In addition, this paper proposes a vehicle speed correction mechanism to further improve the classification accuracy under complex driving conditions.
Technical Paper

Implementation of Reinforcement Learning on Air Source Heat Pump Defrost Control for Full Electric Vehicles

2018-04-03
2018-01-1193
Air source heat pumps as the heating system for full electric vehicles are drawing more and more attention in recent years. Despite the high energy efficiency, frost accumulation on the heat pump evaporator is one of the major challenges associated with air source heat pumps. The evaporator needs to be actively defrosted periodically and heat pump heating will be interrupted during defrosting process. Proper defrost control is needed to obtain high average heat pump energy efficiency. In this paper, a new method for generating air source heat pump defrost control policy using reinforcement learning is introduced. This model-free method has several advantages. It can automatically generate optimal defrost control policy instead of requiring manually determination of the control policy parameters and logics.
Journal Article

Design and Position Control of a Novel Electric Brake Booster

2018-04-03
2018-01-0812
The electric vehicles and the intelligent vehicles put forward to new requirements for the brake system, such as the vacuum-independent braking, automatic or active braking, and regenerative braking, which are the key link for the vehicle’s safety and economy. However, the traditional vacuum brake booster is no longer able to meet these requirements. In this article, a novel integrated power-assisted actuator of brake system is proposed to satisfy the brake system requirements of the electric vehicles and intelligent vehicles. The electronic brake booster system is designed to achieve the function of boosting pedal force of driver, being independent on vacuum source, supplying autonomous or active braking. It is mainly composed of a permanent magnet synchronous motor (PMSM), a two-stage reduction transmission (gears and a ball screw), a servo body, and a reaction disk. The scheme design and power-assisted braking control are the key for the electronic actuator.
Technical Paper

Research on Opposed Piston Two-Stroke Engine for Unmanned Aerial Vehicle by Thermodynamic Simulation

2017-10-08
2017-01-2408
The Opposed Piston Two-Stroke (OPTS) engine has many advantages on power density, fuel tolerance, fuel flexibility and package space. A type of self-balanced opposed-piston folded-crank train two-stroke engine for Unmanned Aerial Vehicle (UAV) was studied in this paper. AVL BOOST was used for the thermodynamic simulation. It was a quasi-steady, filling-and-emptying flow analysis -- no intake or exhaust dynamics were simulated. The results were validated against experimental data. The effects of high altitude environment on engine performance have been investigated. Moreover, the matching between the engine and turbocharger was designed and optimized for different altitude levels. The results indicated that, while the altitude is above 6000m, a multi-stage turbocharged engine system need to be considered and optimized for the UAV.
Technical Paper

On-Line Model Recursive Identification for Variable Parameters of Driveline Vibration

2017-10-08
2017-01-2428
The vehicle driveline suffers low frequency torsional vibration due to the abrupt change of input torque and torque fluctuation under variable frequency. This problem can be solved by model based control, so building a control oriented driveline model is extremely important. In this paper, an on-line recursive identification method is proposed for control oriented model and validated based on an electric car. First of all, the control oriented driveline model is simplified into a six-parameter model with double inertia. Secondly, based on stability analysis, motor torque and motor speed are chosen as input signal for on-line model identification. A recursive identification algorithm is designed and implemented based on Simulink. Meanwhile a detail model of the vehicle which considering driveline parameter variation is built based on ADAMS. Thirdly, on-line identification is conducted by using co-simulation of ADAMS and Simulink.
X