Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Assessment of Several THOR Thoracic Injury Criteria based on a New Post Mortem Human Subject Test Series and Recommendations

2020-03-31
2019-22-0012
Several studies, available in the literature, were conducted to establish the most relevant criterion for predicting the thoracic injury risk on the THOR dummy. The criteria, such as the maximum deflection or a combination of parameters including the difference between the chest right and left deflections, were all developed based on given samples of Post Mortem Human Subject (PMHS). However, they were not validated against independent data and they are not always consistent with the observations from field data analysis. For this reason, 8 additional PMHS and matching THOR tests were carried out to assess the ability of the criteria to predict risks. Accident investigations showed that a reduction of the belt loads reduces the risk of rib fractures. Two configurations with different levels of force limitation were therefore chosen. A configuration representing an average European vehicle was chosen as a reference.
Technical Paper

Characterization of Gaseous Emissions from Blended Plug-In Hybrid Electric Vehicles during High-Power Cold-Starts

2018-04-03
2018-01-0428
There is a distinct difference between plug-in hybrid electric vehicles in the market today. One key distinction that can be made is to classify a plug-in hybrid electric vehicle (PHEV) according to its operational behavior in charge depleting (CD) mode. Some PHEVs are capable of using the electric-only propulsion system to achieve all-electric operation for all driving conditions in CD mode, including full power performance. In contrast, some PHEVs, henceforth termed “blended PHEVs”, cannot satisfy the power requirements of all driving conditions with the electric-only propulsion system and occasionally utilize blended CD operation whereby it is necessary to blend the use of the internal combustion (IC) engine with the use of the electric motor(s) to help power the vehicle.
Technical Paper

Thoracic Injury Risk Curves for Rib Deflections of the SID-IIs Build Level D

2016-11-07
2016-22-0016
Injury risk curves for SID-IIs thorax and abdomen rib deflections proposed for future NCAP side impact evaluations were developed from tests conducted with the SID-IIs FRG. Since the floating rib guide is known to reduce the magnitude of the peak rib deflections, injury risk curves developed from SID-IIs FRG data are not appropriate for use with SID-IIs build level D. PMHS injury data from three series of sled tests and one series of whole-body drop tests are paired with thoracic rib deflections from equivalent tests with SID-IIs build level D. Where possible, the rib deflections of SID-IIs build level D were scaled to adjust for differences in impact velocity between the PMHS and SID-IIs tests. Injury risk curves developed by the Mertz-Weber modified median rank method are presented and compared to risk curves developed by other parametric and non-parametric methods.
Technical Paper

Disc Brake Pad Corrosion Adhesion: Test-to-Field Issue Correlation, and Exploration of Friction Physical Properties Influence to Adhesion Break-Away Force

2016-09-18
2016-01-1926
Brake pad to rotor adhesion following exposure to corrosive environments, commonly referred to as “stiction”, continues to present braking engineers with challenges in predicting issues in early phases of development and in resolution once the condition has been identified. The goal of this study took on two parts - first to explore trends in field stiction data and how testing methods can be adapted to better replicate the vehicle issue at the component level, and second to explore the impacts of various brake pad physical properties variation on stiction propensity via a controlled design of experiments. Part one will involve comparison of various production hardware configurations on component level stiction tests with different levels of prior braking experience to evaluate conditioning effects on stiction breakaway force.
Journal Article

Vehicle Level Brake Drag Target Setting for EPA Fuel Economy Certification

2016-09-18
2016-01-1925
The strong focus on reducing brake drag, driven by a historic ramp-up in global fuel economy and carbon emissions standards, has led to renewed research on brake caliper drag behaviors and how to measure them. However, with the increased knowledge of the range of drag behaviors that a caliper can exhibit comes a particularly vexing problem - how should this complex range of behaviors be represented in the overall road load of the vehicle? What conditions are encountered during coastdown and fuel economy testing, and how should brake drag be measured and represented in these conditions? With the Environmental Protection Agency (amongst other regulating agencies around the world) conducting audit testing, and the requirement that published road load values be repeatable within a specified range during these audits, the importance of answering these questions accurately is elevated. This paper studies these questions, and even offers methodology for addressing them.
Journal Article

Evaluation of PM Measurement Precision and the Quivalency of the Single and Three Filter Sampling Methods for LEV III FTP Standards

2016-01-15
2015-01-9045
Present motor vehicle particulate matter (PM) emission measurement regulations (Code of Federal Regulations (CFR) 40 Part 1065, 1066) require gravimetric determination of PM mass collected onto filter media from dilute exhaust. To improve the current sampling and measurement procedures for TIER 3 PM emissions standard of 3 mg/mile, CFR part 1066 adopted five alternative PM sampling options. One option of great interest is sampling the entire test using a single flow-weighed filter rather than the conventional three-filter (one filter per test phase) approach. The single filter method could lessen the time needed for gravimetric determination by reducing the quantity of filters used for a test and possibly reduce the uncertainty in gravimetric measurements, particularly at sub 1 mg/mile PM levels. This study evaluates the single filter and, to a limited extent, the 2-filter alternatives adopted in 40 CFR Part 1066.
Technical Paper

The Effect of Upper Body Mass and Initial Knee Flexion on the Injury Outcome of Post Mortem Human Subject Pedestrian Isolated Legs

2014-11-10
2014-22-0008
In the ECE 127 Regulation on pedestrian leg protection, as well as in the Euro NCAP test protocol, a legform impactor hits the vehicle at the speed of 40 kph. In these tests, the knee is fully extended and the leg is not coupled to the upper body. However, the typical configuration of a pedestrian impact differs since the knee is flexed during most of the gait cycle and the hip joint applies an unknown force to the femur. This study aimed at investigating the influence of the inertia of the upper body (modelled using an upper body mass fixed at the proximal end of the femur) and the initial knee flexion angle on the lower limb injury outcome. In total, 18 tests were conducted on 18 legs from 9 Post Mortem Human Subjects (PMHS). The principle of these tests was to impact the leg at 40 kph using a sled equipped with 3 crushing steel tubes, the stiffness of which were representative of the front face of a European sedan (bonnet leading edge, bumper and spoiler).
Technical Paper

Evaluation of Gravimetric Method to Measure Light-Duty Vehicle Particulate Matter Emissions at Levels below One Milligram per Mile (1 mg/mile)

2014-04-01
2014-01-1571
The California Air Resources Board (CARB) adopted the Low Emission Vehicle (LEV) III regulations in January 2012, which lowered the particulate matter (PM) emissions standards for light-duty vehicles (LDVs) from 10 milligrams per mile (10 mg/mile) to 3 mg/mile beginning with model year (MY) 2017 and 1 mg/mile beginning with MY 2025. To confirm the ability to measure PM emissions below 1 mg/mile, a total of 23 LDVs (MY pre-2004 to 2009) were tested at CARB's Haagen-Smit Laboratory (HSL) (10 LDVs) and the United States Environmental Protection Agency's (US EPA) National Vehicle and Fuel Emissions Laboratory (NVEFL) (13 LDVs) using the federal test procedure (FTP) drive schedule. One LDV with PM emissions ranging from 0.6 - 0.8 mg/mile was tested at three CARB HSL test cells to investigate intra-lab and inter-lab variability. Reference, trip, and tunnel filter blanks were collected as part of routine quality control (QC) procedures.
Technical Paper

Developing the AC17 Efficiency Test for Mobile Air Conditioners

2013-04-08
2013-01-0569
Chrysler, Ford, General Motors, the U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (CARB) have collaborated over the past two years to develop an efficiency test for mobile air conditioner (MAC) systems. Because the effect of efficiency differences between different MAC systems and different technologies is relatively small compared to overall vehicle fuel consumption, quantifying these differences has been challenging. The objective of this program was to develop a single dynamic test procedure that is capable of discerning small efficiency differences, and is generally representative of mobile air conditioner usage in the United States. The test was designed to be conducted in existing test facilities, using existing equipment, and within a sufficiently short time to fit standard test facility scheduling. Representative ambient climate conditions for the U.S. were chosen, as well as other test parameters, and a solar load was included.
Journal Article

Determination of the PEMS Measurement Allowance for PM Emissions Regulated Under the Heavy-Duty Diesel Engine In-Use Testing Program

2012-04-16
2012-01-1250
This paper summarizes the Heavy-Duty In-Use Testing (HDUIT) measurement allowance program for Particulate Matter Portable Emissions Measurement Systems (PM-PEMS). The measurement allowance program was designed to determine the incremental error between PM measurements using the laboratory constant volume sampler (CVS) filter method and in-use testing with a PEMS. Two independent PM-PEMS that included the Sensors Portable Particulate Measuring Device (PPMD) and the Horiba Transient Particulate Matter (TRPM) were used in this program. An additional instrument that included the AVL Micro Soot Sensor (MSS) was used in conjunction with the Sensors PPMD to be considered a PM-PEMS. A series of steady state and transient tests were performed in a 40 CFR Part 1065 compliant engine dynamometer test cell using a 2007 on-highway heavy-duty diesel engine to quantify the accuracy and precision of the PEMS in comparison with the CVS filter-based method.
Technical Paper

Study of Rib Fracture Mechanisms Based on the Rib Strain Profiles in Side and Forward Oblique Impact

2011-11-07
2011-22-0009
Rib fractures constitute a good indication of severity as there are the most frequent type of AIS3+ chest injuries. In 2008, Trosseille et al. showed a promising methodology to exhibit the rib fracture mechanisms, using strain gauges glued on the ribs of Post-Mortem Human Subjects (PMHS) and developing a specific signal analysis. In 2009, they published the results of static airbag tests performed on 50th percentile male PMHS at different distances and angles (pure lateral and 30 degrees forward oblique direction). To complete these already published data, a set of 8 PMHS lateral and oblique impactor tests were performed with the same methodology. The rib cages were instrumented with more than 100 strain gauges on the ribs, cartilage and sternum. A 23.4 kg impactor was propelled at 4.3 or 6.7 m/s. The forces applied onto the PMHS at 4.3 m/s ranged from 1.6 kN to 1.9 kN and the injuries varied from 4 to 13 rib fractures.
Technical Paper

Investigation on Occupant Ejection in High Severity Rear Impact based on Post Mortem Human Subject Sled Tests

2011-11-07
2011-22-0005
Occupant protection in rear impact involves two competing challenges. On one hand, allowing a deformation of the seat would act as an energy absorber in low severity impacts and would consequently decrease the risk of neck injuries. However, on the other hand, large deformations of the seat may increase the likelihood of occupant ejection in high severity cases. Green et al., 1987 analyzed a total of 919 accidents in Great Britain. They found that occupant ejection resulted in a risk of severe injuries and fatalities between 3.6 and 4.5 times higher than those cases where no ejection was observed. The sample included single front, side and rear impacts as well as multiple impacts and rollover. The rate of belt use in the sample was 50%. While this analysis included all forms of impact scenarios, nevertheless, it highlights the relative injury severity of occupant ejection.
Technical Paper

Sensitivity of the WorldSID 50th and ES-2re Thoraces to Loading Configuration

2010-11-03
2010-22-0013
An ideal injury criterion should be predictive of the risk of injury across the range of loading conditions where it may be applied. The injury risk curve associated with this criterion should be applicable to all loading conditions. With respect to side impact, the injury risk curve should apply to pure lateral or oblique loading by rigid and padded walls, as well as airbags. Trosseille et al., (2009) reported that the number of fractured ribs was higher in pure lateral impact than in forward oblique interaction with an airbag. A good dummy criterion should be able to account for this difference. To evaluate various injury criteria with the WorldSID 50th and ES-2re dummies, the dummies were exposed to the same airbag loadings as the PMHS. The criteria measured in the dummy tests were paired with the rib fractures from the PMHS tests.
Technical Paper

Particulate Mass and Number Emissions from Light-duty Low Emission Gasoline Vehicles

2010-04-12
2010-01-0795
Particulate matter (PM) emitted from light-duty gasoline powered vehicles is under increasing scrutiny due to potential adverse health effects and on ever increasing number of vehicles in the fleet. In this program, a group of California ULEV II and SULEV II certified light-duty gasoline vehicles were tested for PM mass and number emissions and compared with older model LEV I certified gasoline vehicles under the Federal Test Procedure (FTP) test cycle. PM mass and number emissions were collected from a Constant Volume Sampling (CVS) full dilution system. PM mass samples were collected with the gravimetric method. Filter conditioning and weighing procedures are in compliance with the Code of Federal Regulations (CFR) Part 1065. Total particles (solid and volatile) were measured using multiple fast response particle counting instruments including a TSI Engine Exhaust Particle Sizer (EEPS) and two Condensation Particle Counters (CPC).
Technical Paper

Evaluation of Thoracic Deflection as an Injury Criterion for Side Impact Using a Finite Elements Thorax Model

2009-11-02
2009-22-0006
This study aims to investigate the relationship between the number of rib fractures and the thoracic deflection in side impact, and in particular its variability with respect to various loading configurations. The relevance of thoracic deflection as an injury criterion depends on the existence or not of this variability. Few studies were dedicated to this issue in the literature. First, a validation database was established, which covers different impact directions (frontal, lateral and oblique), different loading types (impactor, belt and airbag), and different injury levels (from the absence of, to presence of numerous ribs fractured). The HUMOS human body model was then modified and validated versus the database. Besides the typical validation in terms of global response, particular attention was paid to validate the model with respect to the ribcage strain profile, the occurrence of rib fractures and their locations.
Technical Paper

Injury Risk Curves for the WorldSID 50th Male Dummy

2009-11-02
2009-22-0016
The development of the WorldSID 50th percentile male dummy was initiated in 1997 by the International Organization for Standardization (ISO/SC12/TC22/WG5) with the objective of developing a more biofidelic side impact dummy and supporting the adoption of a harmonized dummy into regulations. More than 45 organizations from all around the world have contributed to this effort including governmental agencies, research institutes, car manufacturers and dummy manufacturers. The first production version of the WorldSID 50th male dummy was released in March 2004 and demonstrated an improved biofidelity over existing side impact dummies. Full-scale vehicle tests covering a wide range of side impact test procedures were performed worldwide with the WorldSID dummy. However, the vehicle safety performance could not be assessed due to lack of injury risk curves for this dummy. The development of these curves was initiated in 2004 within the framework of ISO/SC12/TC22/WG6 (Injury criteria).
Technical Paper

The Effect of Angle on the Chest Injury Outcome in Side Loading

2009-11-02
2009-22-0014
Thoracic injury criteria and injury risk curves in side impact are based on impactor or sled tests, with rigid or padded surfaces while airbags are very common on current cars. Besides, the loading is generally pure lateral while real crashes or regulations can generate oblique loadings. Oblique tests were found in the literature, but no conclusion was drawn with regard to the effect of the direction on the injury outcome. In order to address these two limitations, a series of 17 side airbag tests were performed on Post Mortem Human Subjects (PMHS) at different severities and angles. The subjects were instrumented with accelerometers on the spine and strain gauges on the ribs. They were loaded by an unfolded airbag at different distances in pure lateral or 30 degrees forward. The airbag forces ranged from 1680 N to 6300 N, the injuries being up to 9 separated fractured ribs. This paper provides the test results in terms of physical parameters and injury outcome of the 17 subjects.
Journal Article

Exhaust Valve & Valve Seat Insert – Development for an Industrial LPG Application

2009-05-13
2009-01-1602
Automotive engines are regularly utilized in the material handling market where LPG is often the primary fuel used. When compared to gasoline, the use of gaseous fuels (LPG and CNG) as well as alcohol based fuels, often result in significant increases in valve seat insert (VSI) and valve face wear. This phenomenon is widely recognized and the engine manufacturer is tasked to identify and incorporate appropriate valvetrain material and design features that can meet the ever increasing life expectations of the end-user. Alternate materials are often developed based on laboratory testing – testing that may not represent real world usage. The ultimate goal of the product engineer is to utilize accelerated lab test procedures that can be correlated to field life and field failure mechanisms, and then select appropriate materials/design features that meet the targeted life requirements.
Journal Article

Hot Surface Ignition of Gasoline-Ethanol Fuel Mixtures

2009-04-20
2009-01-0016
The purpose of this paper is to present the results of hot surface ignition (HSI) testing and American Society for Testing and Materials (ASTM) auto-ignition testing (AIT) performed on gasoline fuel mixtures containing varying levels of ethanol. With the increased consumer interest in ethanol-based fuels as a measure of reducing the United States dependence on foreign oil, the use of E85 and other ethanol/petroleum fuel blends is on the increase. While some autoignition data for summer and winter blends of gasoline on hot surfaces exist beyond the standard ASTM E659-78 test procedure [1], there is little data on ethanol-based fuels and their HSI characteristics.
Technical Paper

Concept and Implementation of a Robust HCCI Engine Controller

2009-04-20
2009-01-1131
General Motors recently demonstrated two driveable test vehicles powered by a Homogeneous Charge Compression Ignition (HCCI) engine. HCCI combustion has the potential of a significant fuel economy benefit with reduced after-treatment cost. However, the biggest challenge of realizing HCCI in vehicle applications is controlling the combustion process. Without a direct trigger mechanism for HCCI's flameless combustion, the in-cylinder mixture composition and temperature must be tightly controlled in order to achieve robust HCCI combustion. The control architecture and strategy that was implemented in the demo vehicles is presented in this paper. Both demo vehicles, one with automatic transmission and the other one with manual transmission, are powered by a 2.2-liter HCCI engine that features a central direct-injection system, variable valve lift on both intake and exhaust valves, dual electric camshaft phasers and individual cylinder pressure transducers.
X