Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

Impact Strength Analysis of Body Structure Based on a MBD-FEA Combined Method

2024-04-09
2024-01-2243
In the field of automobile development, sufficient structure strength is the most basic objective to be accomplished. Typically, method of strength analysis could be divided into static strength and dynamic strength. Analysis of static strength constitutes the major part of the development, but the supplement of dynamic strength is also dispensable to assure structural integrity. This paper presents a methodology about analyzing the impact strength of body structure based on a Multi-body Dynamics (MBD) and Finite Element Analysis (FEA) combined method. Firstly, the full vehicle MBD model consists of Curved Regular Grid (CRG) road model, Flexible Ring Tire (FTire) model and dynamic deflection-force bump stop model was built in Adams/Car. Next, Damage Initiation and Evolution Model (DIEM) failure criteria was adopted to describe material failure behavior.
Research Report

Automated Vehicles, the Driving Brain, and Artificial Intelligence

2022-11-16
EPR2022027
Automated driving is considered a key technology for reducing traffic accidents, improving road utilization, and enhancing transportation economy and thus has received extensive attention from academia and industry in recent years. Although recent improvements in artificial intelligence are beginning to be integrated into vehicles, current AD technology is still far from matching or exceeding the level of human driving ability. The key technologies that need to be developed include achieving a deep understanding and cognition of traffic scenarios and highly intelligent decision-making. Automated Vehicles, the Driving Brain, and Artificial Intelligenceaddresses brain-inspired driving and learning from the human brain's cognitive, thinking, reasoning, and memory abilities. This report presents a few unaddressed issues related to brain-inspired driving, including the cognitive mechanism, architecture implementation, scenario cognition, policy learning, testing, and validation.
Technical Paper

Hierarchical Vehicle Active Collision Avoidance Based on Potential Field Method

2021-12-14
2021-01-7038
In this paper, a closed loop path planning and tracking control approach of collision avoidance for autonomous vehicle is proposed. The two-level model predictive control (MPC) is proposed for the path planning and tracking. The upper-level MPC is designed based on the simple vehicle kinematic model to calculate the collision-free trajectory and the potential field method is adopted to evaluate the collision risk and generate the cost function of the optimization problem. The lower-level MPC is the trajectory-tracking controller based on the vehicle dynamics model that calculates the desired control inputs. Finally the control inputs are distributed to steering wheel angle and motor torque via optimal control vectoring algorithm. Test cases are established on the Simulink/CarSim platform to evaluate the performance of the controller.
Technical Paper

A Research on Multi-Disciplinary Optimization of the Vehicle Hood at Early Design Phase

2020-04-14
2020-01-0625
Vehicle hood design is a typical multi-disciplinary task. The hood has to meet the demands of different attributes like safety, dynamics, statics, and NVH (Noise, Vibration, Harshness). Multi-disciplinary optimization (MDO) of vehicle hood at early design phase is an efficient way to support right design decision and avoid late-phase design changes. However, due to lacking in CAD models, it is difficult to realize MDO at early design phase. In this research, a new method of design and optimization is proposed to improve the design efficiency. Firstly, an implicit parametric hood model is built to flexibly change shape and size of hood structure, and generate FE models automatically. Secondly, four types of stiffness analysis, one type of modal analysis, together with pedestrian head impact analysis were established to describe multi-disciplinary concern of vehicle hood design.
Technical Paper

A Design and Optimization Method for Pedestrian Lower Extremity Injury Analysis with the aPLI Model

2020-04-14
2020-01-0929
As pedestrian protection tests and evaluations have been officially incorporated into new C-NCAP, more stringent requirements have been placed on pedestrian protection performance. In this study, in order to reduce the injury of the vehicle front end structure to the pedestrian's lower extremity during the collision, the advanced pedestrian legform impactor (aPLI) model was used in conjunction with the finite element vehicle model for collision simulation based on the new C-NCAP legform test evaluation regulation. This paper selected the key components which have significant influences on the pedestrian's leg protection performance based on the CAE vehicle model, including front bumper, front-cover plate, upper impact pillar, impact beam and lower support plate, to form a simplified model and conducted parametric modeling based on it.
Technical Paper

An Optimization Study of Occupant Restraint System for Different BMI Senior Women Protection in Frontal Impacts

2020-04-14
2020-01-0981
Accident statistics have shown that older and obese occupants are less adaptable to existing vehicle occupant restraint systems than ordinary middle-aged male occupants, and tend to have higher injury risk in vehicle crashes. However, the current research on injury mechanism of aging and obese occupants in vehicle frontal impacts is scarce. This paper focuses on the optimization design method of occupant restraint system parameters for specific body type characteristics. Three parameters, namely the force limit value of the force limiter in the seat belt, pretensioner preload of the seat belt and the proportionality coefficient of mass flow rate of the inflator were used for optimization. The objective was to minimize the injury risk probability subjected to constraints of occupant injury indicator values for various body regions as specified in US-NCAP frontal impact tests requirements.
Technical Paper

A Study of Driver's Driving Concentration Based on Computer Vision Technology

2020-04-14
2020-01-0572
Driving safety is an eternal theme of the transportation industry. In recent years, with the rapid growth of car ownership, traffic accidents have become more frequent, and the harm it brings to human society has become increasingly serious. In this context, car safety assisted driving technology has received widespread attention. As an effective means to reduce traffic accidents and reduce accident losses, it has become the research frontier in the field of traffic engineering and represents the trend of future vehicle development. However, there are still many technical problems that need to be solved. With the continuous development of computer vision technology, face detection technology has become more and more mature, and applications have become more and more extensive. This article will use the face detection technology to detect the driver's face, and then analyze the changes in driver's driving focus.
Technical Paper

Development of Subject-Specific Elderly Female Finite Element Models for Vehicle Safety

2019-04-02
2019-01-1224
Previous study suggested that female, thin, obese, and older occupants had a higher risk of death and serious injury in motor vehicle crashes. Human body finite element models were a valuable tool in the study of injury biomechanics. The mesh deformation method based on radial basis function(RBF) was an attractive alternative for morphing baseline model to target models. Generally, when a complex model contained many elements and nodes, it was impossible to use all surface nodes as landmarks in RBF interpolation process, due to its prohibitive computational cost. To improve the efficiency, the current technique was to averagely select a set of nodes as landmarks from all surface nodes. In fact, the location and the number of selected landmarks had an important effect on the accuracy of mesh deformation. Hence, how to select important nodes as landmarks was a significant issue. In the paper, an efficient peak point-selection RBF mesh deformation method was used to select landmarks.
Technical Paper

Research on the FE Modeling and Impact Injury of Obese 10-YO Children Based on Mesh Morphing Methodology

2018-04-03
2018-01-0540
In order to improve the comprehensive protection for children with variable shapes and sizes, this paper conducted studies on the impact injury for obese children based on a 10-YO finite element model. Some specific geometrics on the body surface were firstly acquired by the combination of pediatric anthropometric database and generator of body (GEBOD). A Radial Basis Function (RBF) based mesh morphing technique was then used to modify the original standard size FE model using the obtained geometrics. The morphed FE model was validated based on the experimental data of frontal sled test and chest-abdomen impact test. The effects of obesity on injury performances were analyzed through simplified high-speed and low-speed crash simulations.
Technical Paper

Automotive Crashworthiness Design Optimization Based on Efficient Global Optimization Method

2018-04-03
2018-01-1029
Finite element (FE) models are commonly used for automotive crashworthiness design. However, even with increasing speed of computers, the FE-based simulation is still too time-consuming when simulating the complex dynamic process such as vehicle crashworthiness. To improve the computational efficiency, the response surface model, as the surrogate of FE model, has been widely used for crashworthiness optimization design. Before introducing the surrogate model into the design optimization, the surrogate should satisfy the accuracy requirements. However, the bias of surrogate model is introduced inevitably. Meanwhile, it is also very difficult to decide how many samples are needed when building the high fidelity surrogate model for the system with strong nonlinearity. In order to solve the aforementioned problems, the application of a kind of surrogate optimization method called Efficient Global Optimization (EGO) is proposed to conduct the crashworthiness design optimization.
Technical Paper

An Improved K-Means Based Design Domain Recognition Method for Automotive Structural Optimization

2018-04-03
2018-01-1032
Design optimization methods are widely used for weight reduction subjecting to multiple constraints in automotive industry. One of the major challenges is to search for the optimal design in an efficient manner. For complex design and optimization problems such as automotive applications, optimization algorithms work better if the initial searching points are within or close to feasible domains. In this paper, the k-means clustering algorithm is exploited to identify sets of reduced feasible domains from the original design space. Within the reduced feasible domains, the optimal design can be obtained efficiently. A mathematical example and a vehicle body structure design problem are used to demonstrate the effectiveness of the proposed method.
Technical Paper

Design Optimization of Vehicle Body NVH Performance Based on Dynamic Response Analysis

2017-03-28
2017-01-0440
Noise-vibration-harshness (NVH) design optimization problems have become major concerns in the vehicle product development process. The Body-in-White (BIW) plays an important role in determining the dynamic characteristics of vehicle system during the concept design phase. Finite Element (FE) models are commonly used for vehicle design. However, even though the speed of computers has been increased a lot, the simulation of FE models is still too time-consuming due to the increase in model complexity. For complex systems, like vehicle body structures, the numerous design variables and constraints make the FE simulations based optimization design inefficient. This calls for the development of a systematic and efficient approach that can effectively perform optimization to further improve the NVH performance, while satisfying the stringent design constraints.
Journal Article

A Comprehensive Validation Method with Surface-Surface Comparison for Vehicle Safety Applications

2017-03-28
2017-01-0221
Computer Aided Engineering (CAE) models have proven themselves to be efficient surrogates of real-world systems in automotive industries and academia. To successfully integrate the CAE models into analysis process, model validation is necessarily required to assess the models’ predictive capabilities regarding their intended usage. In the context of model validation, quantitative comparison which considers specific measurements in real-world systems and corresponding simulations serves as a principal step in the assessment process. For applications such as side impact analysis, surface deformation is frequently regarded as a critical factor to be measured for the validation of CAE models. However, recent approaches for such application are commonly based on graphical comparison, while researches on the quantitative metric for surface-surface comparison are rarely found.
Technical Paper

The Design Optimization of Interior Noise in Vehicle Based on Response Surface Method

2015-06-15
2015-01-2242
The design optimization of vehicle body structure is addressed to reduce interior noise and improve customer satisfaction in this paper. The structural-acoustic model is established and the response of sound pressure in frequency domain is obtained by using finite element method. The minimization of sound pressure near the driver's right ear depends on the geometry of vehicle body structure and the layout of damping treatments. The panel participation analysis is performed to find out the key panels as design variables and improve the efficiency of optimization computation. Response Surface Method (RSM) is utilized to optimize the vibro-acoustic properties of vehicle body structure instead of complex structural-acoustic coupling finite element model. Geometric optimization problem of panels is described and solved to minimize the interior noise in vehicle.
Technical Paper

Test Method, Simulation and Micro-process Dynamic Model for Noise Analysis of Auto Hydraulic Shock Absorber

2015-06-15
2015-01-2351
In order to measure the noise of auto shock absorbers, a test bench used to detect piston-rod vibration responses of shock absorbers and measuring analyzer named SANTS-I were developed. The vibration response data was detected by bench tests, which shows that there are high-frequency violent peaks on the sine curve of piston-rod oscillating with relative low frequency. In order to explain the interior work dynamic mechanism of shock absorbers, a schematic Micro-process Dynamic Model with 10 steps particularly divided extension and compression stroke in more detail, and dynamic differential equations for each step were presented and discussed. Furthermore, numerical simulation for the inner impacts interaction between piston and damping fluid of hydraulic shock absorber was realized by ADINA software, by the establishment of a gas-liquid two-phase finite element model.
Technical Paper

The Design Optimization of Vehicle Interior Noise through Structural Modification and Constrained Layer Damping Treatment

2015-04-14
2015-01-0663
The design optimization of vehicle body structure is addressed to reduce interior noise and improve customer satisfaction in this paper. The structural-acoustic model is developed by using finite element method. The frequency response of structural-acoustic system is computed by modal analysis method. The optimization problem is constructed to minimize the sound pressure level in the right ear of the driver. The sensitivity analysis is carried out to find the key panels to be optimized as design variables and improve the efficiency of optimization computation. Response Surface Method (RSM) is utilized to develop the surrogate model and optimize the vehicle Noise Vehicle and Harshness (NVH) behavior. A 9dB reduction of sound pressure level (SPL) in the right era of the driver is obtained through geometric optimization for panels. Furthermore, the topology optimization model is developed to search the optimal layout of constrained layer damping treatments in the front floor.
Technical Paper

A Simplified Three-Dimensional Finite Element Model of Serpentine Belt and its Application into a Belt Driving System

2015-04-14
2015-01-0451
The serpentine belt's multi-scale problems in geometric size, which gives rise to a very large number of element and deeply low calculating efficiency, always bring obstacles when predicting the dynamic response of a serpentine belt driving system using three-dimensional finite element model (FEM). In this paper, a simplified finite element model is built which can accurately present the original serpentine belt's geometric characteristics such as cross-area and moment of inertia, as well as material characteristics such as stiffness and damping, etc. This simplified model is then used in a three-dimensional belt-drive model to simulate the dynamic characteristics of the belt-drive system. The results show that the tension fluctuation for the original serpentine belt and the simplified belt are in good agreement with each other which confirms that the simplified belt model can be used to predict the engine front end accessory drive system (EFEADS)'s dynamic characteristics.
X