Refine Your Search

Topic

Author

Search Results

Technical Paper

Application of Design and Development Techniques for Direct Injection Spark Ignition Engines

1999-03-01
1999-01-0506
Gasoline direct injection technology is receiving increased attention among automotive engineers due to its high potential to reach future emission and fuel economy goals. This paper reports some of the design and development techniques in use at Chrysler as applied to four-stroke Direct Injection Spark Ignition (DISI) engines. The spray characteristics of Chrysler's single-fluid high-pressure injector are reported. Tools used in the design process are identified. Observations of the in-cylinder fuel/air mixing process using laser diagnostic techniques and Computational Fluid Dynamics (CFD) are described. Finally, combustion and emissions characteristics using Design of Experiment (DoE) tests are presented.
Technical Paper

Can the k-ε Model Withstand the Challenges Posed by Complex Industrial Flows?

1997-04-08
971516
The purpose of this paper is to present numerical solution for three-dimensional flow about rotating short cylinders using the computer program AIRFLO3D. The flow Reynolds number was kept at 106 for all computations. The drag forces on the cylinder were obtained for different rotational speeds. Predictions were obtained for both an isolated cylinder and a cylinder on a moving ground. The standard k-ε model was employed to model the turbulence. Computed drag coefficients agreed well with the previous experimental data up to a spin ratio (=rω/V) of 1.5.
Technical Paper

Plastic Material Separation on Vehicle Subsystems

1997-02-24
970414
Hand dismantling of certain automotive parts has been an accepted process to remove high value materials, but in large scale recycling this may not be economical. In plastics, a pure non contaminated material stream is critical for maintaining high material values and this means designing plastic parts that can be machine separated. One candidate for separating the plastics in vehicle subsystems such as instrument panels and door trim panels is density separation. In order to better understand what processes are required to develop design requirements for automated plastic separation methods Chrysler and the Vehicle Recycling Partnership have undertaken a major materials separation study with MBA Polymers. In this paper, we describe the material separation methods and the application of these methods to three automotive interior assemblies.
Technical Paper

Using Life Cycle Management to Evaluate Lead-Free Electrocoat‡

1997-02-24
970696
Environmental costs are a delayed financial burden that result from product decisions made early in the product life cycle--early material choices may create regulatory and waste management costs that were not factored into the acquisition cost. This paper outlines a step-wise approach to determine decision points; environmental, health, safety and recycling (EHS&R) cost drivers that affect decisions; and sources of information required to conduct a Life Cycle Management (LCM) review. Additionally, how LCM fits into the larger concurrent engineering framework is illustrated with an electrocoat primer example. Upstream and downstream supply chain processes are reviewed, as well as organizational challenges that affect the decision process.
Technical Paper

An Evaluation of Turbulent Kinetic Energy for the In-Cylinder Flow of a Four-Valve 3.5L SI Engine Using 3-D LDV Measurements

1997-02-24
970793
A better understanding of turbulent kinetic energy is important for improvement of fuel-air mixing, which can lead to lower emissions and reduced fuel consumption. An in-cylinder flow study was conducted using 1548 Laser Doppler Velocimetry (LDV) measurements inside one cylinder of a 3.5L four-valve engine. The measurement method, which simultaneously collects three-dimensional velocity data through a quartz cylinder, allowed a volumetric evaluation of turbulent kinetic energy (TKE) inside an automotive engine. The results were animated on a UNIX workstation, using a 3D wireframe model. The data visualization software allowed the computation of TKE isosurfaces, and identified regions of higher turbulence within the cylinder. The mean velocity fields created complex flow patterns with symmetries about the center plane between the two intake valves. High levels of TKE were found in regions of high shear flow, attributed to the collisions of intake flows.
Technical Paper

Static and Dynamic Dent Resistance Performance of Automotive Steel Body Panels

1997-02-24
970158
In recent years, strict weight reduction targets have pushed auto manufacturers to use lighter gauge sheet steels in all areas of the vehicle including exterior body panels. As sheet metal thicknesses are reduced, dentability of body panels becomes of increasing concern. Thus, the goal becomes one of reducing sheet metal thickness while maintaining acceptable dent resistance. Most prior work in this area has focused on quasi-static loading conditions. In this study, both quasi-static and dynamic dent tests are evaluated. Fully assembled doors made from mild, medium strength bake hardenable and non-bake hardenable steels are examined. The quasi-static dent test is run at a test speed of 0.1 m/minute while the dynamic dent test is run at a test speed of 26.8 m/minute. Dynamic dent testing is of interest because it more closely approximates real life denting conditions such as in-plant handling and transit damage, and parking lot damage from car door and shopping cart impact.
Technical Paper

Comparison of Energy Management Materials for Head Impact Protection

1997-02-24
970159
Energy management materials are widely used in automotive interiors in instrument panel, knee bolster, and door absorber applications to reduce the risk of injury to an occupant during a crash. Automobile manufacturers must meet standards set by the National Highway Traffic Safety Administration (NHTSA) that identify maximum levels of injury to an occupant. The recent NHTSA upgrade to the Federal Motor Vehicle Safety Standard (FMVSS) 201 test procedure(1) for upper interior head impact protection has prompted energy management materials' use in several new areas of affected vehicles. While vehicle evaluations continue, results to date show that energy management foams can be effective in reducing the head injury criterion [HIC(d)] to acceptable government and OEM levels.
Technical Paper

Fuel Mixture Temperature Variations in the Intake Port

1996-05-01
961194
Temperature variation and heat transfer phenomena in the intake port of a spark ignition engine with port injection play a significant role in the mixture preparation process, especially during the warm up period. Cold temperatures in the intake port result in a large amount of liquid-fuel film. Since the liquid-fuel film responds at a slower speed than the gas-phase flow during transient operations, the liquid-fuel film acts as a fuel sink (or source) and can degrade the vehicle's driveability, fuel economy, and emissions control. In this work, a one-dimensional, unsteady, multicomponent, multiphase flow model has been developed to study the mixture formation process in the intake port for a modern, multipoint-fuel-injection, gasoline engine. The droplet, liquid film and gas-phase mixture temperature variations and the effects of charge air, initial fuel and port wall temperatures involved in generating the air-fuel mixture are examined.
Technical Paper

Achieving Dent Resistance Improvements and Weight Reduction Through Stamping Process Optimization and Steel Substitution

1996-02-01
960025
Resistance to dents and dings, caused by plant handling and in-service use, is generally recognized as an important performance requirement for automotive outer body panels. This paper examines the dent resistance improvements that can be achieved by maximizing surface stretch, through adjustments to the press settings, and substitution of a higher strength steel grade. Initially, the stamping process was optimized using the steel supplied for production: a Ti/Nb-stabilized, ultra low carbon (ULC) grade. The stamping process was subsequently optimized with a Nb-stabilized, rephosphorized ULC steel, at various thicknesses. The formed panels were evaluated for percent surface stretch, percent thinning, in-panel yield strength after forming, and dent performance. The results showed that dent resistance can be significantly improved, even at a reduced steel thickness, thus demonstrating a potential for weight savings.
Technical Paper

Hydrogen Embrittlement in Automotive Fastener Applications

1996-02-01
960312
Fastener failure due to hydrogen embrittlement is of significant concern in the automotive industry. These types of failures occur unexpectedly. They may be very costly to the automotive company and fastener supplier, not only monetarily, but also in terms of customer satisfaction and safety. This paper is an overview of a program which one automotive company initiated to minimize hydrogen embrittlement in fasteners. The objectives of the program were two-fold. One was to obtain a better understanding of the hydrogen embrittlement phenomena as it relates to automotive fastener materials and processes. The second and most important objective, was to eliminate hydrogen embrittlement failures in vehicles. Early program efforts concentrated on a review of fastener applications and corrosion protection systems to optimize coated fasteners for hydrogen embrittlement resistance.
Technical Paper

Cycle-by-Cycle Analysis of HC Emissions During Cold Start of Gasoline Engines

1995-10-01
952402
A cycle-by-cycle analysis of HC emissions from each cylinder of a four-stroke V-6, 3.3 L production engine was made during cold start. The HC emissions were measured in the exhaust port using a high frequency flame ionization detector (FID). The effect of the initial startup position of the piston and valves in the cycle on combustion and HC emissions from each cylinder was examined. The mass of fuel injected, burned and emitted was calculated for each cycle. The equivalence ratio of the charge in the firing cycles was determined. The analysis covered the first 120 cycles and included the effect of engine transients on HC emissions.
Technical Paper

Reducing Cold-Start Emissions by Catalytic Converter Thermal Management

1995-02-01
950409
Vacuum insulation and phase-change thermal storage have been used to enhance the heat retention of a prototype catalytic converter. Storing heat in the converter between trips allows exhaust gases to be converted more quickly, significantly reducing cold-start emissions. Using a small metal hydride, the thermal conductance of the vacuum insulation can be varied continuously between 0.49 and 27 W/m2K (R-12 to R-0.2 insulation) to prevent overheating of the catalyst. A prototype was installed in a Dodge Neon with a 2.0-liter engine. Following a standard preconditioning and a 23-hour cold soak, an FTP (Federal Test Procedure) emissions test was performed. Although exhaust temperatures during the preconditioning were not hot enough to melt the phase-change material, the vacuum insulation performed well, resulting in a converter temperature of 146°C after the 23-hour cold soak at 27°C.
Technical Paper

Engine Misfire Detection by Ionization Current Monitoring

1995-02-01
950003
Engine misfires cause a negative impact on exhaust emissions. Severe cases could damage the catalyst system permanently. These are the basic reasons why CARB (California Air Resources Board) mandated the detection of engine misfires in their OBD II (On-Board Diagnostics II) regulations. For the last several years, automobile manufacturers and their suppliers have been working diligently on various solutions for the “Misfire Detection” challenge. Many have implemented a solution called “Crankshaft Velocity Fluctuation” (CVF), which utilizes the crank sensor input to calculate the variation of the crankshaft rotational speed. The theory is that any misfires will contribute to a deceleration of the crankshaft velocity due to the absence of pressure torque. This approach is marginal at best due to the fact that there could be many contributors to a crankshaft velocity deceleration under various operating conditions. To sort out which is a true misfire is a very difficult task.
Technical Paper

Experimental and Computer Simulation Analysis of Transients on an Automobile Communication Bus

1995-02-01
950038
Voltage and current surges are a major concern when it comes to ensuring the functional integrity of electrical and electronic components and modules in an automobile system. This paper presents a computer simulation study for analyzing the effect of high voltage spikes and current load dump on a new Integrated Driver/Receiver (IDR) IC, currently being developed for a J1850 Data Communication Bus in an automobile. It describes the modeling and simulation of the protection structure proposed for the device. The simulation study yields a prediction of current and voltage capability of the protection circuit based on thermal breakdown and transient responses of the circuit. Two levels of modeling, namely, the behavioral level model and the component level model, are used to generate the simulation results. Experimental data will be acquired and used to validate the simulation model when the actual device becomes available.
Technical Paper

Analysis of the Pelvis-Chest Interactions in Hybrid III

1995-02-01
950663
The interaction ILLEGIBLEf the chest of the Hybrid III dummy with the air bag restrILLEGIBLEt system during a crash is complex. Forces applied to one ILLEGIBLEmponent of the dummy can generate an unexpected response in a distal part. Motion, both linear and angular, of the pelvis during impact can create an enigmatic spike in the acceleration of the chest. Because significant changes in the chest acceleration response can affect the development of an airbag system, this pelvis-chest interaction is cause for concern. The factors that appear to affect the chest acceleration spike as a result of the pelvis-chest interaction are: the mass moment of inertia of the pelvis, the interaction of the pelvis with the femur, the characteristic of the lumbar spine, and the differential velocity of the pelvis with respect to the chest.
Technical Paper

Energy-Absorbing Polyurethane Foam to Improve Vehicle Crashworthiness

1995-02-01
950553
Federal legislation mandates that automotive OEMS provide occupant protection in collisions involving front and side impacts This legislation, which is to be phased-in over several years, covers not only passenger cars but also light-duty trucks and multipurpose passenger vehicles (MPVs) having a gross vehicle weigh rating (GVWR) of 8,500 lb (3,850 kg) or less. During a frontal impact, occupants within the vehicle undergo rapid changes in velocity. This is primarily due to rapid vehicle deceleration caused by the rigid nature of the vehicle's metal frame components and body assembly. Many of today's vehicles incorporate deformable, energy-absorbing (EA) structures within the vehicle structure to manage the collision energy and slow the deceleration which in turn can lower the occupant velocity relative to the vehicle. Occupant velocities can be higher in light-duty trucks and MPVs having a full-frame structure resulting in increased demands on the supplemental restraint system (SRS).
Technical Paper

Dodge Ram Pickup Vehicle: From Human Factors Development to Production Intent Metal Assembly

1993-11-01
932988
To evaluate and refine interior architecture of the new Dodge Ram pickup truck three years before production, a road worthy interior package validation buck was built using a fiberglass body shell. Molds for the shell were made using CAD/CAM techniques. Advanced CAD/CAM techniques were used to build the interior buck of a subsequent model from individual panels molded in carbon fiber. This buck also included inner structural panels and interior trim components taken from CAD data. For this and subsequent new vehicle programs, refinement of construction techniques allows the bucks to serve as aids in product design and manufacturing feasibility studies.
Technical Paper

Natural Gas Converter Performance and Durability

1993-03-01
930222
Natural gas-fueled vehicles impose unique requirements on exhaust aftertreatment systems. Methane conversion, which is very difficult for conventional automotive catalysts, may be required, depending on future regulatory directions. Three-way converter operating windows for simultaneous conversion of HC, CO, and NOx are considerably more narrow with gas engine exhaust. While several studies have demonstrated acceptable fresh converter performance, aged performance remains a concern. This paper presents the results of a durability study of eight catalytic converters specifically developed for natural gas engines. The converters were aged for 300 hours on a natural gas-fueled 7.0L Chevrolet engine operated at net stoichiometry. Catalyst performance was evaluated using both air/fuel traverse engine tests and FTP vehicle tests. Durability cycle severity and a comparison of results for engine and vehicle tests are discussed.
Technical Paper

The Development of Accelerated Component Durabiltiy Test Cycles Using Fatigue Sensitive Editing Techniques

1992-02-01
920660
A method is proposed to qualify automotive component designs in the laboratory using multiaxial real time load/strain input data acquired in the field. Fatigue damage analysis methods are used to edit the field data to produce an accelerated test cycle that retains all of the damaging real time load histories present in the original test cycle. Use of this procedure can contribute to a significant reduction in product design/development time.
Technical Paper

Improvements in the Dent Resistance of Steel Body Panels

1992-02-01
920243
A computer-controlled body panel testing machine has been used to quantify stiffness and dent resistance of body panels at Chrysler. The influence of yield strength and local reinforcement on the mechanical behavior of automotive door panels has been investigated. Medium strength steels in the range of 210 -240 MPa yield strength have produced significant improvements in dent resistance over a 160 MPa yield strength steel. Considerable improvements in dent resistance can also be attributed to the use of local, adhesively attached, glass fiber reinforcement patches. The effects of boundary conditions and panel shape on stiffness and dent resistance are illustrated in this application.
X