Refine Your Search

Topic

Author

Search Results

Technical Paper

Stiffness Simulation Techniques and Test Correlations in Automotive Interior Cockpit Systems (IP, Door Trim and Floor Console Assembly)

2014-04-01
2014-01-1025
An automotive cockpit module is a complex assembly, which consists of components and sub-systems. The critical systems in the cockpit module are the instrument panel (IP), the floor console, and door trim assemblies, which consist of many plastic trims. Stiffness is one of the most important parameters for the plastic trims' design, and it should be optimum to meet all the three functional requirements of safety, vibration and durability. This paper presents how the CAE application and various other techniques are used efficiently to predict the stiffness, and the strength of automotive cockpit systems, which will reduce the product development cycle time and cost. The implicit solver is used for the most of the stiffness analysis, and the explicit techniques are used in highly non-linear situations. This paper also shows the correlations of the CAE results and the physical test results, which will give more confidence in product design and reduce the cost of prototype testing.
Technical Paper

Development for an Aged Tire Durability Standard - Rationale for a Steady State DOE

2008-04-14
2008-01-1495
In response to the TREAD act of 2002, ASTM F09.30 Aged Tire Durability Task Group was formed with the objective of developing a scientifically valid, short duration aged durability test which correlates to field behavior. The target end-of-test condition was belt edge separation (or related damage). One strategy, driven by that objective, has been a steady state design of experiment investigating aging temperature and duration as well as roadwheel speed, pressure and deflection. The rationale behind investigating a steady state test and selecting these parameters and methodology for setting their initial values is reviewed.
Technical Paper

Development for an Aged Tire Durability Standard - Comparison of Stepped-Up Load and Steady State DOE Results

2008-04-14
2008-01-1494
In response to the TREAD act of 2002, ASTM F09.30 Aged Tire Durability Task Group was formed with the objective of developing a scientifically valid, short duration, laboratory aged tire durability test which correlates to field behavior. The target end-of-test condition was belt edge separation (or related damage). Two strategies have been investigated, aged stepped-up load and steady state DOE. Results of the two strategies are compared and contrasted and a test condition from the steady state DOE has been identified as the preferred direction for further validation.
Technical Paper

Development for an Aged Tire Durability Standard - Steady State DOE Study

2008-04-14
2008-01-1493
In the work leading to the TREAD Act, some members of Congress expressed the need for some type of aging test on light vehicle tires. Since no industry-wide recommended practice existed, the ASTM F09.30 Aged Tire Durability task group was established in 2002 to develop a scientifically valid, short duration, laboratory aged tire durability test which correlates to in-service aging. The target end-of-test condition was belt edge separation (or related tire conditions). One strategy, driven by that objective, has been a Steady State DOE investigating aging temperature and duration, as well as, roadwheel speed, pressure and deflection. Testing was performed on three tire types, including two where relevant field aging data was publicly available from NHTSA studies. A region of interest, within the design space, was identified where target end-of-test conditions were possible and undesirable (non-target or non-representative of those seen in consumer use) were avoided.
Technical Paper

Combining DFSS and Multi-body Dynamics for Vehicle Ride Tuning

2007-04-16
2007-01-0586
A methodology involving Design for Six Sigma (DFSS) and Multi-body dynamic simulation is employed to tune a body-on-frame vehicle, for improved ride (shake) performance. The design space is limited to four sets of symmetric body mounts for a vehicle. The stiffness and damping characteristics of the mounts are the control factors in the virtual experiment. Variation of these design parameters from the nominal settings, as well as axle size, tire and wheel combinations, tire pressure, shock damping, and vehicle speed constitute the noise factors. This approach proves to be an excellent predictor of the vehicle behavior, by which much insight as to influence of each parameter on vehicle performance is gained. Ultimately, specific recommendations for the control factor settings are provided. Subsequent hardware builds show excellent agreement with the analytical model and suggested tuning.
Technical Paper

General Motors DEXRON®-VI Global Service-Fill Specification

2006-10-16
2006-01-3242
During early 2005 General Motors released a newly developed ATF for the factory fill of all GM Powertrain stepped gear automatic transmissions. The new fluid provided significantly improved performance in terms of friction durability, viscosity stability, aeration and foam control and oxidation resistance. In addition, the fluid has the potential to enable improved fuel economy and extended drain intervals. Since the performance of the new fluid far exceeded that of the DEXRON®-III service fill fluids available at the time it became necessary to upgrade the DEXRON® service fill specification in order to ensure that similar fluids were available in the market for service and repair situations. This latest upgrade to the service fill specification is designated DEXRON®-VI [1].
Technical Paper

Comparison of Designs for Safety/Mission Critical Systems

2005-04-11
2005-01-0775
We investigate and analyze the concept of “missed detection” and its application to the design of architectures that integrate multiple safety/mission critical functions. The analysis is based on considering different design alternatives with varying levels of missed fault detection of the components constituting the functions or subsystems. The overall system reliability and availability in a fault tolerant architecture relies as heavily on the ability to detect a fault as it does on being able to prevent a fault as one would attempt by having multiple levels of redundancy and/or improved reliability of the components in such an architecture. In short, the safety of a particular architecture depends not only on component reliability, and fault tolerance, expressed as redundancy, but also on fault detectability.
Technical Paper

Streamlining Chassis Tuning for Chevrolet and GMC Trucks and Vans

2005-04-11
2005-01-0406
This paper describes some methods for greatly reducing or possibly eliminating subjective tuning of suspension parts for ride and handling. Laptop computers can now be used in the vehicle to guide the tuning process. The same tools can be used to select solutions that reduce sensitivity to production and environmental variations. OBJECTIVE Reduce or eliminate time required for tuning of suspension parts for ride characteristics. Improve the robustness of ride performance relative to variations in ambient temperature and production tolerances. PROBLEM REQUIRING SOLUTION AND METHOD OF APPROACH Traditional development programs for new vehicles include time-consuming subjective ride evaluations. One example is shock absorber tuning. Even if sophisticated models define force-velocity curves, numerous hardware iterations are needed to find valvings that will reproduce the curves. Many evaluation rides are needed to modify the valvings to meet performance targets.
Technical Paper

Assessing Required Levels of Redundancy for Composite Safety/Mission Critical Systems

2004-03-08
2004-01-1664
We investigate and analyze the concept of “shared redundancy” and its application to the design of architectures that integrate multiple safety/mission critical functions or subsystems. The analysis is based on considering different design alternatives with varying levels of physical redundancy of the components constituting the functions or subsystems. Under a set of assumptions, we show that the overall system reliability and availability in a shared redundancy based architecture can be improved without increasing the levels of physical redundancy for the components employed at the subsystem level. However, such an improvement will be limited by the component(s) with the minimal level of redundancy.
Technical Paper

Assessing Error in Reliability Estimates Obtained via CAE Simulations

2003-03-03
2003-01-0146
When using a math model to estimate the failure rate of a product, or the mean and standard deviation of performance characteristics of the product, one important issue is the accuracy of the estimates. All math models have error. This error will be transmitted to the error in the estimates of failure rate, mean, and standard deviation. This paper presents a method to calculate the bounds on the transmitted error, which can then be used to 1) obtain confidence bounds on estimates of mean, standard deviation, and failure rate; and 2) establish accuracy requirements on math models.
Technical Paper

Predictive Engineering for Instrument-Panel Application Development

1999-03-01
1999-01-0695
With parts consolidation and increasing systems performance requirements, instrument panel systems have become increasingly complex. For these systems, the use of predictive engineering tools can often reduce development time and cost. This paper outlines the use of such tools to support the design and development of an instrument panel (IP) system. Full-scale test results (NVH, head impact, etc.) of this recently introduced IP system were compared with predicted values. Additionally, results from moldfilling analysis and manufacturing simulation are also provided.
Technical Paper

Development of Skin Thermal Transducer for Automotive Applications

1997-05-19
971855
This paper summarizes the design, development, fabrication, validation, and application of a new device called the Skin Thermal Transducer (STT). The development of this instrument was driven by the demand for reliable information on human skin temperatures during contact with a warm surface on the interior of an automobile. The primary technology that enabled the development of the STT was the thermo-electric cooler (TEC) in combination with a heat sink that is used to simulate the core temperature of the human body. The STT was validated with human skin data and the agreement was within an acceptable range. The STT provides the automotive engineer with a measuring device to optimize and validate the underbody regions of the vehicle with respect to occupant thermal comfort. The STT can also be applied to optimize other automotive and non-automotive products in which the human skin touches a warm surface.
Technical Paper

Ride and Handling Development of the 1997 Chevrolet Corvette

1997-02-24
970098
This paper describes the ride and handling development process used for the 1997 Corvette. Three levels of suspension are available for the 1997 Corvette: base (FE1), sport (FE3) and RTD or Real Time Damping (F45) suspensions. All suspensions will be discussed in this paper A review of the development and vehicle integration tradeoffs for each of the specific chassis components is included. Control arm bushings, springs, jounce bumpers, anti-roll bars and insulators, tires, shock mounts, shock absorber valving, real-time damping, steering development, alignment and measurements are discussed.
Technical Paper

Design Synthesis of Suspension Architecture for the 1997 Chevrolet Corvette

1997-02-24
970092
This paper describes the hardware execution of the front and rear suspensions of the all new 1997 Chevrolet Corvette. Topics covered include: alternative design trade-off, mass optimization, alignment and trim, structural interfaces, shared components, component design and a review of the overall design of the front and rear suspensions. Two case studies are detailed for the front upper and rear lower control arms. The systems engineering process used for suspension design is described throughout the paper.
Technical Paper

The Processes and Technologies Used in the Design, Build, and Test of the Dodge Stratus Super Touring Car

1996-12-01
962505
Chrysler is a company run by automotive enthusiasts, and its motorsports programs are an integral part of the company's corporate, brand, and product development process. Chrysler's motorsports programs are executed from within its Platform Team system by the same engineers, using the same processes and facilities as production vehicle programs. This results in teaching and inspiring engineers, designers, and technicians, as well as providing genuine technical benefits to the company. This paper tells the “how” story of the design, build, and test of the Dodge Stratus Super Touring Car. Detailed results have been purposely omitted from the paper due to the competitive nature of motor racing.
Technical Paper

Changes in Reliability During the Design and Development Process of a Vehicle's Electrical/Electronic Systems

1995-02-01
950826
The changes in reliability of the Electrical/Electronic Systems of a vehicle-line during its early design and development engineering processes have been studied. A computerized vehicle failure tracking system was used to provide results from several stages of early development vehicle testing at the proving grounds. The data were analyzed using a software program that assumes that failures in a repairable system, such as a car, occur as a nonhomogeneous Poisson process. Results suggest that, under normal circumstances, a significant and quantitative improvement in reliability is achievable as the system or component design progresses through the early design and development processes. This also provides a means of predicting future system(s) reliability when the system(s) is in production.
Technical Paper

The General Motors Driving Simulator

1994-03-01
940179
A driving simulator development project at the Systems Engineering and Technical Process Center (SE/TP) is exploring the role of driving simulation in the vehicle design process. The simulator provides two vehicle mockup testing arenas that support a wide field of view, computer-generated image of the road scene which dynamically responds to driver commands as a function of programmable vehicle model parameters. Two unique aspects of the simulator are the fast 65 ms response time and low incidence rate of simulator induced syndrome (about 5%). Preliminary model validation results and data comparing driver performance in a vehicle vs. the simulator indicate accurate handling response dynamics within the on-center handling region (<0.3g lateral acceleration). Applications have included supporting the development of new steering system concepts, as well as evaluating the usability of vehicle controls and displays.
Technical Paper

Chrysler 8.0-Liter V-10 Engine

1993-11-01
933033
Chrysler Corporation has developed an 8.0-liter engine for light truck applications. Numerous features combine to produce the highest power and torque ratings of any gasoline-fueled light truck engine currently available while also providing commensurate durability. These features include: a deep-skirt ten-cylinder 90° “V” block, a Helmholtz resonator intake manifold that enhances both low and mid-range torque, light die cast all-aluminum pistons for low vibration, a unique firing order for smooth operation, a “Y” block configuration for strength and durability, a heavy duty truck-type thermostat to control warm up, and a direct ignition system.
Technical Paper

Natural Gas Converter Performance and Durability

1993-03-01
930222
Natural gas-fueled vehicles impose unique requirements on exhaust aftertreatment systems. Methane conversion, which is very difficult for conventional automotive catalysts, may be required, depending on future regulatory directions. Three-way converter operating windows for simultaneous conversion of HC, CO, and NOx are considerably more narrow with gas engine exhaust. While several studies have demonstrated acceptable fresh converter performance, aged performance remains a concern. This paper presents the results of a durability study of eight catalytic converters specifically developed for natural gas engines. The converters were aged for 300 hours on a natural gas-fueled 7.0L Chevrolet engine operated at net stoichiometry. Catalyst performance was evaluated using both air/fuel traverse engine tests and FTP vehicle tests. Durability cycle severity and a comparison of results for engine and vehicle tests are discussed.
Technical Paper

Reliability and Maintainability of Machinery and Equipment for Effective Maintenance

1993-03-01
930569
Typically, “Reliability and Maintainability (R&M)” is perceived as a tool for products alone. Putting emphasis on reliability only at the cost of maintainability is another archetype. Inclusion of both reliability and maintainability (R&M) in all the phases of the machinery and equipment (M&E) life cycle is required in order to be world competitive in manufacturing. R&M is mainly a design function and it should be a part of any design review. Inclusion of the R&M concept early in the life cycle of M&E is key to cost effective and competitive manufacturing. Neither responsive manufacturing nor preventive maintenance can raise it above the level of inherent R&M.
X