Refine Your Search

Topic

Author

Search Results

Journal Article

Design for Six Sigma (DFSS) for Optimization of Automotive Heat Exchanger and Underhood Air Temperature

2014-04-01
2014-01-0729
In this paper a design methodology for automotive heat exchangers has been applied which brings robustness into the design process and helps to optimize the design goals: as to maintain an optimal coolant temperature and to limit the vehicle underhood air temperature within a tolerable limit. The most influential design factors for the heat exchangers which affect the goals have been identified with that process. The paper summarizes the optimization steps necessary to meet the optimal functional goals for the vehicle as mentioned above. Taguchi's [1] Design for Six Sigma (DFSS) methods have been employed to conduct this analysis in a robust way.
Journal Article

Optimization of a Porous Ducted Air Induction System Using Taguchi's Parameter Design Method

2014-04-01
2014-01-0887
Taguchi method is a technology to prevent quality problems at early stages of product development and product design. Parameter design method is an important part in Taguchi method which selects the best control factor level combination for the optimization of the robustness of product function against noise factors. The air induction system (AIS) provides clean air to the engine for combustion. The noise radiated from the inlet of the AIS can be of significant importance in reducing vehicle interior noise and tuning the interior sound quality. The porous duct has been introduced into the AIS to reduce the snorkel noise. It helps with both the system layout and isolation by reducing transmitted vibration. A CAE simulation procedure has been developed and validated to predict the snorkel noise of the porous ducted AIS. In this paper, Taguchi's parameter design method was utilized to optimize a porous duct design in an AIS to achieve the best snorkel noise performance.
Technical Paper

Simplified Approach of Chassis Frame Optimization for Durability Performance

2014-04-01
2014-01-0399
In recent trend, there is a huge demand for lightweight chassis frame, which improves fuel efficiency and reduces cost of the vehicle. Stiffness based optimization process is simple and straightforward while durability (life) based optimizations are relatively complex, time consuming due to a two-step (Stress then life) virtual engineering process and complicated loading history. However, durability performances are critical in chassis design, so a process of optimization with simplified approach has been developed. This study talks about the process of chassis frame weight optimization without affecting current durability performance where complex durability load cases are converted to equivalent static loadcases and life targets are cascaded down to simple stress target. Sheet metal gauges and lightening holes are the parameters for optimization studies. The optimization design space is constrained to chassis unique parts.
Technical Paper

Assessing the Likelihood of Binding in Distorted Stepped Radius Cylinder Bores

2014-04-01
2014-01-0395
Interference assessments of a stepped-radius power-train component moving within a deformed stepped bore often arise during engine and transmission development activities. For example, when loads are applied to an engine block, the block distorts. This distortion may cause a cam or crankshaft to bind or wear prematurely in its journals as the part rotates within them. Within an automatic transmission valve body, care must be taken to ensure valve body distortion under oil pressure, assembly, and thermal load does not cause spool valves to stick as they translate within the valve body. In both examples, the mechanical scenario to be assessed involves a uniform or stepped radius cylindrical part maintaining a designated clearance through a correspondingly shaped but distorted bore. These distortions can occur in cross-sections (“out-of-round”) or along the bore (in an “s” or “banana” shaped distortions).
Technical Paper

A Scenario-Based Approach to Assess Exposure for ASIL Determination

2014-04-01
2014-01-0211
Exposure in ISO 26262 is defined as the state of being in an operational situation that can be hazardous if coincident with the failure mode under analysis. An operational situation is defined as a scenario that can occur during a vehicle's life with examples given such as driving, parking, or maintenance. Accurately predicting exposure is one of the more difficult tasks in the ASIL determination. ISO 26262 Part 3 attempts to provide guidance in Annex B through tables of potential operational situations and associated exposure levels. However, the contents of these tables may not allow for an accurate prediction of exposure and may lead to an exposure value that is too high or too low. In this paper, we describe a potential method for determining exposure that considers a potential mishap scenario as a composition of multiple coincident operational situations rather than considering a single operational situation as indicated in the tables in Annex B of Part 3.
Technical Paper

Cause and Effect of Reversible Deactivation of Diesel Oxidation Catalysts

2014-04-01
2014-01-1518
To meet TierII/LEVII emissions standards, light duty diesel (LDD) vehicles require high conversion efficiencies from the Aftertreatment Systems (ATS) for the removal of both Hydrocarbon (HC) and Nitrogen Oxide (NOx) species. The most populous configuration for LDD ATS have the Selective Catalytic Reduction (SCR) catalyst positioned on the vehicle behind the close coupled Diesel Oxidation Catalyst (DOC) and Catalyzed Diesel Particulate Filter (CDPF). This SCR position may require active heating measures which rely on the DOC/CDPF to provide heat through the combustion of HC and CO in the exhaust. Although DOCs are always impacted by their aging conditions, some aging conditions are shown to be both reversible and irreversible.
Technical Paper

Tonal Metrics in the Presence of Masking Noise and Correlation to Subjective Assessment

2014-04-01
2014-01-0892
As the demand for Sound Quality improvements in vehicles continues to grow, robust analysis methods must be established to clearly represent end-user perception. For vehicle sounds which are tonal by nature, such as transmission or axle whine, the common practice of many vehicle manufacturers and suppliers is to subjectively rate the performance of a given part for acceptance on a scale of one to ten. The polar opposite of this is to measure data and use the peak of the fundamental or harmonic orders as an objective assessment. Both of these quantifications are problematic in that the former is purely subjective and the latter does not account for the presence of masking noise which has a profound impact on a driver's assessment of such noises. This paper presents the methodology and results of a study in which tonal noises in the presence of various level of masking noise were presented to a group of jurors in a controlled environment.
Technical Paper

Vehicle Body Panel Thermal Buckling Resistance Analysis

2014-04-01
2014-01-0926
This paper discusses CAE simulation methods to predict the thermal induced buckling issues when vehicle body panels are subjected to the elevated temperature in e-coat oven. Both linear buckling analysis and implicit quasi-static analysis are discussed and studied using a quarter cylinder shell as an example. The linear buckling analysis could produce quick but non-conservative buckling temperature. With considering nonlinearity, implicit quasi-static analysis could predict a relative conservative critical temperature. In addition, the permanent deformations could be obtained to judge if the panel remains visible dent due to the buckling. Finally these two approaches have been compared to thermal bucking behavior of a panel on a vehicle going through thermal cycle of e-coat oven with the excellent agreement on its initial design and issue fix design. In conclusion, the linear buckling analysis could be used for quick thermal buckling evaluation and comparison on a series of proposals.
Technical Paper

Fuel Tank Strap Fatigue Sensitivity Study under Fuel Level Variation and Payload Variation

2014-04-01
2014-01-0921
Fuel Tank Straps very often get different durability fatigue test results from different types of durability testing such as shaker table vibration, road test simulator (RTS) vehicle testing and proving ground vehicle durability testing. One test produces good durability results and other may indicate some durability risk. A special study was conducted to address this inconsistency. It was found that fuel level in the tank plays a big role in fuel tank strap durability. Higher fuel levels in a tank produce higher loads in straps and lower fatigue life. This paper will use a CAE fuel tank strap model and acquired proving ground strap load data to study fuel level influence in fuel tank strap durability. The fuel level study includes a full tank of fuel, 3 quarters tank of fuel, a half tank of fuel and one quarter tank of fuel.
Journal Article

Modeling and Analysis of Powertrain NVH with Focus on Growl Noise

2013-05-13
2013-01-1875
Superior NVH performance is a key focus in the development of new powertrains. In recent years, computer simulations have gained an increasing role in the design, development, and optimization of powertrain NVH at component and system levels. This paper presents the results of a study carried out on a 4-cylinder in-line spark-ignition engine with focus on growl noise. Growl is a low frequency noise (300-700 Hz) which is primarily perceived at moderate engine speeds (2000-3000 rpm) and light to moderate throttle tip-ins. For this purpose, a coupled and fully flexible multi-body dynamics model of the powertrain was developed. Structural components were reduced using component mode synthesis and used to determine dynamics loads at various engine speeds and loading conditions. A comparative NVH assessment of various crankshaft designs, engine configurations, and in- cylinder gas pressures was carried out.
Technical Paper

Passenger Vehicle Hybrid Hydraulic Powertrain Sound Quality Investigation

2013-05-13
2013-01-2004
The sound quality of a prototype series hydraulic hybrid passenger vehicle powertrain was analyzed. Different sound quality metrics were evaluated to determine which one correlated best with the subjective assessment of sound quality, and a desired sound quality target was developed. Next, the effect of the design of the hydraulic powertrain components on sound quality was analyzed. Two extreme options were analyzed: “stiff” systems with a hard drive shaft or short fluid hoses, and “soft” systems with a soft drive shaft or long fluid hoses. Experimental results from these systems are presented in the paper. Finally, design recommendations were made to achieve the best sound quality of the hybrid hydraulic powertrain, and therefore maximum customer satisfaction.
Journal Article

Comparison of Austempering and Quench-and-Tempering Processes for Carburized Automotive Steels

2013-04-08
2013-01-0173
Carburized parts often see use in powertrain components for the automotive industry. These parts are commonly quenched and tempered after the carburizing process. The present study compared the austempering heat treatment to the traditional quench-and-temper process for carburized parts. Samples were produced from SAE 8620, 4320, and 8822 steels and heat treated across a range of conditions for austempering and for quench-and-tempering. Distortion was examined through the use of Navy C-Ring samples. Microstructure, hardness, and Charpy toughness were also examined. X-ray diffraction was used to compare the residual stress found in the case of the components after the quench-and-temper and the austempering heat treatments. Austempering samples showed less distortion and higher compressive residual stresses, while maintaining comparable hardness values in both case and core. Toughness measurements were also comparable between both processes.
Journal Article

Estimation of One-Sided Lower Tolerance Limits for a Weibull Distribution Using the Monte Carlo Pivotal Simulation Technique

2013-04-08
2013-01-0329
This paper introduces a methodology to calculate confidence bounds for a normal and Weibull distribution using Monte Carlo pivotal statistics. As an example, a ready-to-use lookup table to calculate one-sided lower confidence bounds is established and demonstrated for normal and Weibull distributions. The concept of one-sided lower tolerance limits for a normal distribution was first introduced by G. J. Lieberman in 1958 (later modified by Link in 1985 and Wei in 2012), and has been widely used in the automotive industry because of the easy-to-use lookup tables. Monte Carlo simulation methods presented here are more accurate as they eliminate assumptions and approximations inherent in existing approaches by using random experiments. This developed methodology can be used to generate confidence bounds for any parametric distribution. The ready-to-use table for the one-sided lower tolerance limits for a Weibull distribution is presented.
Journal Article

Development of a Standard Spin Loss Test Procedure for FWD-Based Power Transfer Units

2013-04-08
2013-01-0361
As vehicle fuel economy continues to grow in importance, the ability to accurately measure the level of efficiency on all driveline components is required. A standardized test procedure enables manufacturers and suppliers to measure component losses consistently and provides data to make comparisons. In addition, the procedure offers a reliable process to assess enablers for efficiency improvements. Previous published studies have outlined the development of a comprehensive test procedure to measure transfer case speed-dependent parasitic losses at key speed, load, and environmental conditions. This paper will take the same basic approach for the Power Transfer Units (PTUs) used on Front Wheel Drive (FWD) based All Wheel Drive (AWD) vehicles. Factors included in the assessment include single and multi-stage PTUs, fluid levels, break-in process, and temperature effects.
Journal Article

Transmission Torque Converter Arc Spring Damper Dynamic Characteristics for Driveline Torsional Vibration Evaluation

2013-04-08
2013-01-1483
Torsional vibration dampers are used in automatic and manual transmissions to provide passenger comfort and reduce damage to transmission & driveline components from engine torsionals. This paper will introduce a systematic method to model a torque converter (TC) arc spring damper system using Simdrive software. Arc spring design parameters, dynamometer (dyno) setup, and complete powertrain/driveline system modeling and simulation are presented. Through arc spring dynamometer setup subsystem modeling, the static and dynamic stiffness and hysteresis under different engine loads and engine speeds can be obtained. The arc spring subsystem model can be embedded into a complete powertrain/driveline model from engine to wheels. Such a model can be used to perform the torsional analysis and get the torsional response at any location within the powertrain/driveline system. The new methodology enables evaluation of the TC damper design changes to meet the requirements.
Journal Article

Reducing Radiated Structural Noise from AIS Surfaces using Several FEM Optimization Methods

2013-04-08
2013-01-0997
Two finite element optimization techniques are presented for minimizing automotive engine air induction structural radiated noise and mass. Air induction systems are generally made of thin wall plastic which is exposed to high levels of pulsating engine noise. Weak air induction system walls vibrate excessively creating noise that can be heard by the driver. The conventional approach is to add ribs (many times through trial and error) which increase part weight or by adding “kiss-offs,” which restrict air flow. The finite element optimization methods considered here are shape optimization and topometry optimization. Genesis, a fully integrated finite element analysis and optimization package by Vanderplaats Research & Development, was used to perform finite element optimization. Choice of optimization method is primarily dependent on several factors which are appearance, part interference and flow restriction requirements.
Journal Article

Random Vibration Testing Development for Engine Mounted Products Considering Customer Usage

2013-04-08
2013-01-1007
In this paper, the development of random vibration testing schedules for durability design verification of engine mounted products is presented, based on the equivalent fatigue damage concept and the 95th-percentile customer engine usage data for 150,000 miles. Development of the 95th-percentile customer usage profile is first discussed. Following that, the field engine excitation and engine duty cycle definition is introduced. By using a simplified transfer function of a single degree-of-freedom (SDOF) system subjected to a base excitation, the response acceleration and stress PSDs are related to the input excitation in PSD, which is the equivalent fatigue damage concept. Also, the narrow-band fatigue damage spectrum (FDS) is calculated in terms of the input excitation PSD based on the Miner linear damage rule, the Rayleigh statistical distribution for stress amplitude, a material's S-N curve, and the Miles approximate solution.
Journal Article

Fatigue Life Prediction of an Automobile Cradle Mount

2013-04-08
2013-01-1009
Elastomers have large reversible elastic deformation, good damping and high energy absorption capabilities. Due to these characteristics along with low cost of manufacturing, elastomeric components are widely used in many industries and applications, including in automobiles. These components are typically subjected to complex multiaxial and variable amplitude cyclic loads during their service life. Therefore, fatigue failure and life prediction are important issues in the design and analyses of these components. Availability of an effective CAE technique to evaluate fatigue damage and to predict fatigue life under complex loading conditions is a valuable tool for such analysis. This paper discusses a general CAE analytical technique for durability analysis and life prediction of elastomeric components. The methodology is then illustrated and verified by using experimental fatigue test results from an automobile cradle mount.
Journal Article

Assessing the Propensity for Valve Train Tick Noise

2013-04-08
2013-01-1737
Valve ticking noises within a cam actuated valve train can arise mysteriously. One valve train may produce valve ticking noises, while a second, geometrically similar valve train may perform more quietly. To better understand this phenomena, we examine in detail the prototypical motion of a valve driven by a rocker arm with cylindrical rocker pad. General features of a valve's motion through its guide, induced by a rocker arm with a cylindrical pad, are derived. From these general features of valve motion, guide contact points during lift events can be inferred, and as a result, detailed forces and moments acting on the valve may be derived. From this derivation of forces acting on the valve, a metric for assessing the propensity of a valve train to tick as a result of the valve stem impacting its guide is proposed. The proposed metric indicates how the likelihood of valve tick noise can be reduced through judicious choices for valve train geometries, clearances and surface finishes.
Journal Article

Rainflow Counting Based Block Cycle Development for Fatigue Analysis using Nonlinear Stress Approach

2013-04-08
2013-01-1206
An accurate representation of proving ground loading is essential for nonlinear Finite Element analysis and component fatigue test. In this paper, a rainflow counting based multiple blocks loading development procedure is described. The procedure includes: (1) Rainflow counting analysis to obtain the relationship between load range and cumulative repeats and the statistical relationship between load range and mean load; (2) Formation of preliminary multiple loading blocks with specified load range, mean load, and the approximate cycle repeats, and construction of the preliminary multiple loading blocks; (3) Calibration and finalization of the repeats for preliminary multiple loading blocks according to the equivalent damage rule, meaning that the damage value due to the block loads is equivalent to that from a PG loading.
X