Refine Your Search

Search Results

Viewing 1 to 17 of 17
Journal Article

CAE Applications and Techniques used in Calculating the Snaps Insertions and Retentions Efforts in Automotive Trims

2014-04-01
2014-01-1032
A snap-fit is a form-fitting joint, which is used to assemble plastic parts together. Snap-fits are available in different forms like a projecting clip, thicker section or legs in one part, and it is assembled to another part through holes, undercuts or recesses. The main function of the snap-fit is to hold the mating components, and it should withstand the vibration and durability loads. Snap-fits are easy to assemble, and should not fail during the assembling process. Based on the design, these joints may be separable or non-separable. The non- separable joints will withstand the loads till failure, while separable joints will withstand only for the design load. The insertion and the retention force calculation for the snaps are very essential for snap-fit design. The finite element analysis plays a very important role in finding the insertion and the retention force values, and also to predict the failure of the snaps and the mating components during this process.
Journal Article

Effects of Roller Diameter and Number on Fatigue Lives of Cam Roller Follower Bearings

2011-04-12
2011-01-0489
Effects of roller diameter and number on the contact pressures, subsurface stresses and the fatigue lives of cam roller follower bearings are investigated in this paper. Finite element analyses under plane strain conditions were conducted to identify the effects of the diameter and number of the rolling elements and the thickness of the outer ring. The fatigue life of the inner pin generally increases as the roller diameter increases. But, reducing the number of rollers to accommodate larger rollers does not necessarily increase the fatigue life. The inevitable decrease of the thickness of the outer ring due to the increase of the roller diameter results in the increase of compliance for the outer ring. This increase of compliance leads to excessive deformation of the outer ring and consequently more load must be carried by fewer number of rolling elements.
Journal Article

Applying Virtual Statistical Modeling for Vehicle Dynamics

2010-04-12
2010-01-0019
Dimensional variation simulation is a computer aided engineering (CAE) method that analyzes the statistical efforts of the component variation to the quality of the final assembly. The traditional tolerance analysis method and commercial CAE software are often based on the assumptions of the rigid part assembly. However, the vehicle functional attributes, such as, ride and handling, NVH, durability and reliability, require understanding the assembly quality under various dynamic conditions while achieving vehicle dimensional clearance targets. This paper presents the methods in evaluating and analyzing the impacts of the assembly variations for the vehicle dynamic performance. Basic linear tolerance stack method and advanced study that applies various CAE tools for the virtual quality analysis in the product and process design will be discussed.
Technical Paper

FEA Predictions and Test Results from Magnesium Beams in Bending and Axial Compression

2010-04-12
2010-01-0405
Finite element analysis (FEA) predictions of magnesium beams are compared to load versus displacement test measurements. The beams are made from AM60B die castings, AM30 extrusions and AZ31 sheet. The sheet and die cast beams are built up from two top hat sections joined with toughened epoxy adhesive and structural rivets. LS-DYNA material model MAT_124 predicts the magnesium behavior over a range of strain rates and accommodates different responses in tension and compression. Material test results and FEA experience set the strain to failure limits in the FEA predictions. The boundary conditions in the FEA models closely mimic the loading and constraint conditions in the component testing. Results from quasi-static four-point bend, quasi-static axial compression and high-speed axial compression tests of magnesium beams show the beam's behavior over a range of loadings and test rates. The magnesium beams exhibit significant material cracking and splitting in all the tests.
Technical Paper

Mechanical and Thermophysical Properties of Magnesium Alloy Extrusions

2010-04-12
2010-01-0410
Magnesium alloy extrusions offer potentially more mass saving compared to magnesium castings. One of the tasks in the United States Automotive Materials Partnership (USAMP) ?Magnesium Front End Research and Development? (MFERD) project is to evaluate magnesium extrusion alloys AM30, AZ31 and AZ61 for automotive body applications. Solid and hollow sections were made by lowcost direct extrusion process. Mechanical properties in tension and compression were tested in extrusion, transverse and 45 degree directions. The tensile properties of the extrusion alloys in the extrusion direction are generally higher than those of conventional die cast alloys. However, significant tension-compression asymmetry and plastic anisotropy need to be understood and captured in the component design.
Technical Paper

Lessons Learned for Effective Design Verification

2009-04-20
2009-01-0559
The ultimate goal of reliability engineering is to prevent design failure modes in the field. Effective design verification can be a powerful tool toward achieving this goal. Reducing development time, minimizing cost, and improving quality are further challenges which drive effective design verification. This paper explains the key steps required to develop an effective design verification plan and report (DVP&R). In addition, lessons learned will be discussed using specific examples of undesirable practices. Design for Six Sigma (DFSS) verification phase requirements are also examined.
Technical Paper

FEA Simulation of Induction Hardening and Residual Stress of Auto Components

2009-04-20
2009-01-0418
The paper studies the distributions of residual stresses in auto components after induction hardening. Three prototype parts are analyzed in this paper. Firstly, the temperature fields of the analyzed parts are quantitatively simulated during quenching by simulating surface heating to the austenitization temperature of the material. Secondly, the formation and states of the residual stresses are predicted. Therefore the distribution of residual stress is simulated and shows compressive stresses on the surface of components so that the strength can be improved. The simulated results by computer are compared with experimental results. The good comparison indicates that the results obtained by the FEA analysis are reliable. Thus, it can be concluded that the FEA (Finite element analysis) program is effectively developed to simulate heating and quenching processes and residual stresses distribution.
Technical Paper

Optimizing the Fastening Strategy & Joint Integrity to Reduce Stresses in Ring Gear Bolts on Rear Differential Assemblies

2009-04-20
2009-01-0411
Ring gear bolts in differentials are often modified in size to accommodate the additional clamp load that is required due to an increase in torque from a vehicle's powertrain. Depending on a given program several constraints need to be considered. These include cost, validation time, reliability / durability and timing for implementation. In this paper, a Finite Element Analysis (FEA) procedure for analyzing stresses in ring gear bolts within a rear differential assembly is outlined and the computational results are then compared to quasi-static bench test results that were developed to measure bending and tension loads in the ring gear bolts during loading and unloading of the axle pinion. A dynamometer test is then developed to duplicate the failure mode and provide a comparison of the design changes proposed and the expected improvement in durability.
Technical Paper

Finite Element Analyses and Correlations on Oil Canning of a Door Outer Panel

2009-04-20
2009-01-0818
In this paper the nature and analytical methodologies for sheet metal panel oil canning are introduced. Lab tests, numerical predictions using finite element analysis and their correlations on oil canning of a door outer panel are described. Different modeling approaches in finite element analysis are discussed, and a simplified approach of loading by using a coupling element is recommended.
Journal Article

Residual Stresses and Dimensional Changes in Ferritic Nitrocarburized Navy C-rings and Prototype Stamped Parts Made from SAE 1010 Steel

2009-04-20
2009-01-0425
Nitrocarburizing is an economical surface hardening process and is proposed as an alternative heat treatment method to carbonitriding. The focus of this study is to compare the size and shape distortion and residual stresses resulting from the ferritic nitrocarburizing and gas carbonitriding processes for SAE 1010 plain carbon steel. Gas, ion and vacuum nitrocarburizing processes utilizing different heat treatment temperatures and times were performed to compare the different ferritic nitrocarburizing processes. Navy C-Ring specimens and prototype stamped parts were used to evaluate size and shape distortion. X-ray diffraction techniques were used to determine the residual stresses in the specimens. Overall, the test results indicate that the nitrocarburizing process gives rise to smaller dimensional changes than carbonitriding, and that the size and shape distortion can be considerably reduced by applying appropriate ferritic nitrocarburizing procedures.
Journal Article

Microstructural Effects on Residual Stress, Retained Austenite, and Case Depth of Carburized Automotive Steels

2008-04-14
2008-01-1422
SAE 8620 and other steels are typically used in the carburized condition for powertrain applications in the automotive industry, i.e., differential ring gears, camshafts, and transmission gears. Although current recommended carburizing practice involves normalizing the steel prior to carburizing, elimination of this normalizing treatment could lead to significant cost reductions. This research examines whether the normalizing process prior to carburizing could be eliminated without negatively affecting part performance. This study focused on the effects of the initial microstructure on the residual stress, retained austenite, and effective case depths of carburized SAE 8620 and PS-18 steels.
Journal Article

Distortion and Residual Stresses in Nitrocarburized and Carbonitrided SAE 1010 Plain Carbon Steel

2008-04-14
2008-01-1421
The focus of this study was to determine the residual stress and retained austenite profiles for carbonitrided and nitrocarburized SAE 1010 plain carbon steel and to relate these profiles to one another and to the distortion resulting from heat treatment. Navy C-ring specimens were used for the purpose of this study and X-ray diffraction techniques were used to measure both residual stress and retained austenite. The findings from this research are then applied to a manufacturing application involving the surface hardening of a thin shelled, plain carbon steel automotive component.
Journal Article

A Springback Compensation Study on Chrysler 300C Stamping Panels Using LS-DYNA®

2008-04-14
2008-01-1443
Springback compensation studies on a few selected auto panels from the hot selling Chrysler 300C are presented with details. LS-DYNA® is used to predict the springback behavior and to perform the iterative compensation optimization. Details of simulation parameters using LS-DYNA® to improve the prediction accuracy are discussed. An iterative compensation algorithm is also discussed with details. Four compensation examples with simulation predictions and actual panel measurement results are included to demonstrate the effectiveness of LS-DYNA® predictions. An aluminum hood inner and a high strength steel roof bow are compensated, constructed and machined based on simulation predictions. The measurements on actual tryout panels are then compared with simulation predictions and good correlations were achieved. Iterative compensation studies are also done on the aluminum hood inner and the aluminum deck lid inner to demonstrate the effectiveness of LS-DYNA® compensation algorithm.
Technical Paper

Method to Efficiently Implement Automotive Application Algorithms Using Signal Processing Engine (SPE) of Copperhead Microcontroller

2008-04-14
2008-01-1222
This paper presents the studies on how to efficiently and easily implement ECU application algorithms using the Signal Processing Engine (SPE) of the Copperhead microcontroller. With the introduced development and testing concepts and methods, users can easily establish their own PC based SPE emulation system. All application unit testing and verification work for the fixed point implementation using SPE functions can be easily conducted in PC without relying on a costly real time test bench and expensive third party dedicated software. With this simple development environment, the code can be run in both embedded controllers and PCs with exact bit to bit numerical behavior. The paper also demonstrates many other benefits such as code statistics information retrieval, floating simulation mode, automated code verification, online and offline code sharing.
Technical Paper

Active Bolster for Side Impact Protection

2008-04-14
2008-01-0191
This paper discusses the simulation based methodology for designing and developing a deployable vehicle door interior trim, an Active Side Bolster (ASB), and its interaction (in FEA simulation) with an ATD in side impact crash test modes like FMVSS2141 Oblique Pole, IIHS2 and LINCAP. The FEA models, especially with the complexity of the full vehicle structure, the ATDs3 and the airbags, require extensive correlation using vehicle tests. A methodology is outlined here to ensure that the model results could be used to generate FEA ATD assessments without a significant numerical contamination of the results. These correlated FEA models for side impact vehicle tests and ATDs were used to simulate various side impact crash test conditions; such as IIHS barrier, the FMVSS-214 Oblique Pole and LINCAP. The ATD responses from the baseline vehicle FEA models and those modified with the addition of an ASB in the door shows improvement in assessment values due to the introduction of the ASB.
Technical Paper

Friction Stir Welding of Aluminum for Automotive Closure Panel Applications

2008-04-14
2008-01-0145
Friction stir welding (FSW) shows advantages for joining lightweight alloys for automotive applications. In this research, the feasibility of friction stir welding aluminum for an automotive component application was studied. The objective of this research was to improve the Friction Stir Spot Welding (FSSW) technique used to weld an aluminum closure panel (CP). The spot welds were made using the newly designed swing-FSSW technique. In a previous study (unpublished), the panel was welded from the thin to thick side using both an 8 mm and a 10 mm diameter tool. The 10 mm tool passed various fatigue tests; however, the target was to improve performance of the 8 mm tool, especially to increase the number of cycle before the first crack appearance during fatigue testing. In this study fatigue tests and static strength was recorded for weld specimens that were welded from thick-to-thin with an 8 mm diameter tool.
Technical Paper

A Case Study in Structural Optimization of an Automotive Body-In-White Design

2008-04-14
2008-01-0880
A process for simultaneously optimizing the mechanical performance and minimizing the weight of an automotive body-in-white will be developed herein. The process begins with appropriate load path definition though calculation of an optimized topology. Load paths are then converted to sheet metal, and initial critical cross sections are sized and shaped based on packaging, engineering judgment, and stress and stiffness approximations. As a general direction of design, section requirements are based on an overall vehicle “design for stiffness first” philosophy. Design for impact and durability requirements, which generally call for strength rather than stiffness, are then addressed by judicious application of the most recently developed automotive grade advanced high strength steels. Sheet metal gages, including tailored blanks design, are selected via experience and topometry optimization studies.
X