Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Denso's Initiatives of CO2 Capture and Utilization Technology toward Carbon Neutrality

2023-09-29
2023-32-0128
DENSO started a pilot demonstration of on-site methanation as “CO2 circulation plant” as proactive initiative for CO2 capture and storage/utilization (CCUS) technologies toward achievement of carbon neutrality by 2035 in our own business. The CO2 circulation plant was designed to capture CO2 primarily generated by the plant and recycle it as an energy source of the facility. We also started work on the development of electric swing CO2 adsorption (ESA) technology to achieve low-energy CO2 capture.
Technical Paper

Sensorless Control of a Brushless Motor for the ESC Unit

2023-04-11
2023-01-0452
In general, automatic braking uses an electric stability control (ESC) hydraulic unit that can automatically increase the hydraulic pressure in the wheel cylinder (hereinafter called wheel pressure), independent of the driver’s braking operation. The hydraulic unit should have sufficient pressure response to apply autonomous emergency braking (AEB). It was necessary for the hydraulic unit to have a high flow rate for the pressure response. To satisfy the performance requirements of the AEB, a brushless motor, which has a high maximum rotational speed and good response, is adopted for the hydraulic unit. Furthermore, sensorless control, which does not require a rotation angle sensor, has been developed so that the motor size can be small and common to conventional units. The developed sensorless control can switch the driving methods in three states: pre-rotation, low speed, and high speed.
Journal Article

Development of Inverter Drive Unit for Battery Electric Vehicle

2023-04-11
2023-01-0528
Toyota Motor Corporation has developed a new battery electric vehicle (BEV) on the dedicated e-TNGA platform for BEVs, which was designed to lower the center of gravity of the vehicle and increase body stiffness. In addition to a full-time 4WD system, another feature of this new BEV is its pleasurable driving experience. A new inverter drive unit was developed for this system. Unlike the previous inverter, the advantage of the new inverter is that it is small enough to be mounted inside the transaxle housing, thereby contributing to the availability of interior and luggage space. The temperature rise of the power semiconductors in the inverter was reduced considerably by the development of a new power semiconductor for BEVs. This enables a parallel layout of two power semiconductors instead of three. The components of the inverter were also downsized. A coreless current sensor was adopted, and capacitors were developed with significantly lower capacitance.
Journal Article

The Missing Link: Developing a Safety Case for Perception Components in Automated Driving

2022-03-29
2022-01-0818
Safety assurance is a central concern for the development and societal acceptance of automated driving (AD) systems. Perception is a key aspect of AD that relies heavily on Machine Learning (ML). Despite the known challenges with the safety assurance of ML-based components, proposals have recently emerged for unit-level safety cases addressing these components. Unfortunately, AD safety cases express safety requirements at the system level and these efforts are missing the critical linking argument needed to integrate safety requirements at the system level with component performance requirements at the unit level. In this paper, we propose the Integration Safety Case for Perception (ISCaP), a generic template for such a linking safety argument specifically tailored for perception components. The template takes a deductive and formal approach to define strong traceability between levels.
Technical Paper

Suppression of Soot Formation in Quasi-steady Diesel Spray Flame Produced by High-pressure Fuel Injection with Multi-orifice Nozzle

2019-12-19
2019-01-2270
The set-off length (also referred to as the “lift-off length”) is reduced by the re-entrainment of the burned gas by the backward flow surrounding a diesel spray jet produced by a multi-hole nozzle. In the present study, to estimate the equivalence ratio at the set-off length, a means of estimating the amount of burned gas that is re-entrained into the near-nozzle region of the diesel spray jet was established. The results revealed that the suppression of soot formation in quasi-steady diesel spray flames produced by a multi-hole nozzle and a high injection pressure is not attained by reducing the equivalence ratio at the set-off length. Analysis of the amount of soot along the spray axis using a two-color method revealed that the maximum soot amount position appears in a quasi-steady spray flame, after the collapse of the head vortex in which a dense soot cloud is formed. The maximum soot amount position does not change even if the injection pressure varies.
Technical Paper

Study on Flame Behavior Control by the Electric Field

2015-11-17
2015-32-0738
The purpose of this study is to elucidate flame propagation behavior of homogeneous propane-air mixture under application of non-uniform electric field. A needle-shaped electrode was attached to the ceiling and a plate electrode was set at bottom of combustion chamber, so that the electric field was applied in the direction of the chamber's vertical axis. A homogeneous propane-air mixture was supplied at equivalence ratio of 1.0 and was ignited by leaser induced breakdown under atmospheric pressure and room temperature. It was found that the flame front and plate electrode were repelled each other and a thin air layer was formed between the flame and plate electrode when a relatively low positive DC non-uniform electric field was applied to the needle-shaped electrode. It might be thought that the induced current was generated in the flame front, so that the flame front and plate electrode repelled each other.
Journal Article

Comparison of Reponses of the Flex-PLI and TRL Legform Impactors in Pedestrian Tests

2012-04-16
2012-01-0270
Injuries to the lower extremities are one of the major issues in vehicle-to-pedestrian collisions. To evaluate pedestrian lower extremity protection, the Transport Research Laboratory (TRL) legform impact tests have been conducted according to the specifications in the EU directive. The TRL legform impactor consists of a tibia and a femur steel shaft connected by deformable knee bars. A Flexible Pedestrian Leg-form Impactor (Flex-PLI), which has flexible femur and tibia, is examined in the Global Technical Regulation (GTR). Previous studies compared the responses of both impactors; however, the relation between the tibia acceleration in the TRL legform impactor and the maximum bending moment in the Flex-PLI (both injury measures are for the tibia fracture) is not understood sufficiently.
Technical Paper

Response Surface Modeling of Diesel Spray Parameterized by Geometries Inside of Nozzle

2011-04-12
2011-01-0390
A response surface model of a diesel spray, parameterized by the internal geometries of a nozzle, is established in order to design the nozzle geometries optimally for spray mixing. The explanatory variables are the number of holes, the hole diameter, the inclined angle, the hole length, the hole inlet radius, K-factor and the sac diameter. The model is defined as a full second-order polynomial model including all the first-order interactions of the variables, and a total of 40 sets of numerical simulations based on D-optimal design are carried out to calculate the partial regression coefficients. Partial regression coefficients that deteriorate the estimate accuracy are eliminated by a validation process, so that the estimate accuracy is improved to be ±3% and ±15% for the spray penetration and the spread, respectively. Then, the model is applied to an optimization of the internal geometries for the spray penetration and the spray spread through a multi-objective genetic algorism.
Technical Paper

The Advanced Diesel Common Rail System for Achieving a Good Balance Between Ecology and Economy

2008-01-09
2008-28-0017
At present, various efforts are being made in the industrial world to preserve the earth's environment. Automobile industry has to comply with the emission control regulations including NOx and PM and the requirement of reducing CO2 emission from the viewpoint of global warming protection and energy saving. In these situations, diesel engines having a high potential to reduce CO2 emission are attracting much attention. In order to enhance the potential of diesel to reduce CO2 while solving its problems (“slow, dirty, noisy”), common rail systems are vital. DENSO developed an advanced common rail system (CRS) that integrates fuel injectors capable of delivering up to five injection events per combustion cycle at 180MPa injection pressure. This paper describes the injection performance and effects of the 180MPa common rail system and then explains the next generation common rail system.
Technical Paper

“Wireless Communications for Vehicle Safety:Radio Link Performance & Wireless Connectivity Methods”

2006-10-16
2006-21-0030
Many accidents occur today when distant objects or roadway impediments are not quickly detected. To help avoid these accidents, longer-range safety systems are needed with real-time detection capability and without requiring a line-of-sight (LOS) view by the driver or sensor. Early detection at intersections is required for obstacle location around blind corners and dynamic awareness of approaching vehicles on intersecting roadways. Many of today's vehicular safety systems require short LOS distances to be effective. Such systems include forward collision warning, adaptive cruise control, and lane keeping assistance. To operate over longer LOS distances and in Non-LOS (NLOS) conditions, cooperative wireless communications systems are being considered. This paper describes field results for LOS and NLOS radio links for one candidate wireless system: 5.9GHz Dedicated Short Range Communications (DSRC).
Technical Paper

Compact High-resolution Millimeter-wave Radar for Front-obstacle Detection

2006-04-03
2006-01-1463
We propose a novel millimeter wave radar system and object detection algorithm for automobile use by using advanced null scanning method. Generally, null scanning method can achieve a higher resolution and a more compact sensor size compared to beam scanning method, but needs huge computing power. We introduced the theory of forgetting factor into it and developed a new null scan algorithm. It achieved a high lateral object separation ability of less than 3 degree, and a quick response under feasible computing power in simulation and test vehicle. These technologies enable compact and high performance radar for advanced safety system.
Technical Paper

The Development of the Lead Free Carbon Brush for Starters

2005-04-11
2005-01-0599
Carbon brushes for automotive starters are used under severe conditions of high electric current density, high contact pressure and high sliding velocity. Therefore lead has traditionally been added to brushes to improve performance and durability. Lead is an environmental hazardous substance. In the EU, the law prohibits adding lead to brushes for electric motors which is installed on new automobiles in and after January 2005. In order to develop the lead free carbon brush for starters, we analyzed the effect and selected substitutive substance of lead. Adding lead to the brush reduces the electric resistance increase of the brush in high-temperature and high-humidity atmosphere and in high-temperature atmosphere. Furthermore lead reduces the wear amount of brush. We developed the lead free brush surpassing the lead addition brush in performance and durability by addition of lead alternatives silver and zinc.
Technical Paper

The Latest Technology of Controlling Micro-Pore in Cordierite Diesel Particulate Filter for DPNR System

2004-06-08
2004-01-2028
A DPNR (Diesel Particulate-Nox Reduction) system is designed to simultaneously remove PM (Particulate Matter) and NOx from the exhaust of diesel engined vehicles. A DPF (Diesel Particulate Filter) is used in the DPNR system to reduce the PM. The DPF must have high PM filtering efficiency, while at the same time having low back pressure. However, filtering efficiency and back pressure have trade off relations. Therefore, it is necessary to optimize the pore distribution in the walls of the DPF to satisfy both characteristics. This paper will explain that optimized control of pore distribution enables both high PM filtering efficiency and low back pressure.
Technical Paper

Concept of Vehicle Electric Power Flow Management System (VEF)

2004-03-08
2004-01-0361
Increasing electric loads in a vehicle causes over-discharge of a battery and drag torque due to an alternator. This paper gives a system concept of vehicle electric power flow management to solve these issues. Its primary function includes preserving electricity in a battery, stabilizing electric bus voltage, interfacing with vehicle torque control system, and improving fuel economy. The key point to realize such a system is a unified structure. It offers ‘Plug and Play’ function for electric power management components. Newly developed Vehicle Electric Power Flow Management System (VEF ) totally controls electric power flow in a vehicle. VEF contains an Electric Power Manager and its functional sub-systems, and controls them with the key parameter ‘electric power’. The sub-system includes Generation, Storage, Conversion, and Distribution to the loads.
Technical Paper

Condensation Simulation for ECU Package

2004-03-08
2004-01-1696
Up to now, while automobile electric packages have demanded the high density for small and light products, electric leaks, which have occurred due to condensation, have been a major problem. To prevent any electric leaks, a conformal coating on the electric parts (ex. ECU: Electronic Control Unit) has been needed, but in general the design rules of the conformal coating (ex. Application area) is vague. Therefore, DENSO demands to clear the design rules of conformal coating electric package for higher reliability. To meet the demand, DENSO has developed a condensation simulation method using CAE that can show the occurrence condition of condensation fast and accurately. In the result, DENSO has been able to get the design rules where to need the conformal coating in the electric package for automobiles.
Technical Paper

Environment-Friendly Fluxless Soldering Process for High Sealing Ability on Pressure Sensors

2001-03-05
2001-01-0341
In a conventional soldering process, solvents, such as chlorofluorocarbons (CFCs), have been necessary to remove the flux-residue after soldering. A new CFC-free fluxless soldering process has been developed to obtain high sealing ability even in a small soldering area. This new process utilizes a reducing atmosphere with an appropriate load and assembly orientation to solder the parts. Under this fluxless condition, it is found that appropriate loading and good solder-wettability of the upper part increase the wettability of the lower part.
Technical Paper

Use of CAE Technology in DENSO A/C Development

2001-03-05
2001-01-0033
In view of the shorter development period for new automobiles, we have developed a computer-aided engineering (CAE) system to aid in commensurately speedy development of automotive air conditioners. This system consists of three tools: one that calculates various design specifications instantaneously, one that enables designers to easily examine air-conditioner shape, and one that converts shape data into calculable model data to enable 3D (three-dimensional) processing. Effective use of these tools cuts air-conditioner development lead time to half that of the conventional process.
Technical Paper

Integrated Mold Technology for Semiconductor Device

1999-03-01
1999-01-0161
Recently, automotive semiconductor devices need miniaturization. One of the most important technologies is the package which encapsulates devices. In addition, the outer shape of the package is needed to change according to the mounted space. Conventional devices are mounted in the case, and encapsulated with potting resin. However this package structure is difficult to miniaturize because the case size limit. This report describes the development of the packaging technology for miniature and particular outer shape. The devices are set in the cavity and molded to one package. The three-dimension flow simulation is applied to analyze the flow in the cavity. The results of simulation correspond with experimental results. The cavity structure and the mold resin can be optimized by the simulation.
X