Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

The Thermodynamics of Exhaust Gas Condensation

2017-06-29
2017-01-9281
Water vapor is, aside from carbon dioxide, the major fossil fuel combustion by-product. Depending on its concentration in the exhaust gas mixture as well as on the exhaust gas pressure, its condensation temperature can be derived. For typical gasoline engine stoichiometric operating conditions, the water vapor dew point lies at about 53 °C. The exhaust gas mixture does however contain some pollutants coming from the fuel, engine oil, and charge air, which can react with the water vapor and affect the condensation process. For instance, sulfur trioxide present in the exhaust, reacts with water vapor forming sulfuric acid. This acid builds a binary system with water vapor, which presents a dew point often above 100 °C. Exhaust composition after leaving the combustion chamber strongly depends on fuel type, engine concept and operation point. Furthermore, the exhaust undergoes several chemical after treatments.
Journal Article

Development and Demonstration of LNT+SCR System for Passenger Car Diesel Applications

2014-04-01
2014-01-1537
The regulations for mobile applications will become stricter in Euro 6 and further emission levels and require the use of active aftertreatment methods for NOX and particulate matter. SCR and LNT have been both used commercially for mobile NOX removal. An alternative system is based on the combination of these two technologies. Developments of catalysts and whole systems as well as final vehicle demonstrations are discussed in this study. The small and full-size catalyst development experiments resulted in PtRh/LNT with optimized noble metal loadings and Cu-SCR catalyst having a high durability and ammonia adsorption capacity. For this study, an aftertreatment system consisting of LNT plus exhaust bypass, passive SCR and engine independent reductant supply by on-board exhaust fuel reforming was developed and investigated. The concept definition considers NOX conversion, CO2 drawback and system complexity.
Technical Paper

Gasoline HCCI/CAI on a Four-Cylinder Test Bench and Vehicle Engine - Results and Conclusions for the Next Investigation Steps

2010-05-05
2010-01-1488
Internal combustion engines with lean homogeneous charge and auto-ignition combustion of gasoline fuels have the capability to significantly reduce fuel consumption and realize ultra-low engine-out NOx emissions. Group research of Volkswagen AG has therefore defined the Gasoline Compression Ignition combustion (GCI®) concept. A detailed investigation of this novel combustion process has been carried out on test bench engines and test vehicles by group research of Volkswagen AG and IAV GmbH Gifhorn. Experimental results confirm the theoretically expected potential for improved efficiency and emissions behavior. Volkswagen AG and IAV GmbH will utilize a highly flexible externally supercharged variable valve train (VVT) engine for future investigations to extend the understanding of gas exchange and EGR strategy as well as the boost demands of gasoline auto-ignition combustion processes.
Technical Paper

Comparison of Different EGR Solutions

2008-04-14
2008-01-0206
This paper compares 4 different EGR systems by means of simulation in GT-Power. The demands of optimum massive EGR and fresh air rates were based on experimental results. The experimental data were used to calibrate the model and ROHR, in particular. The main aim was to investigate the influence of pumping work on engine and vehicle fuel consumption (thus CO2 production) in different EGR layouts using optimum VG turbine control. These EGR systems differ in the source of pressure drop between the exhaust and intake pipes. Firstly, the engine settings were optimized under steady operation - BSFC was minimized while taking into account both the required EGR rate and fresh air mass flow. Secondly, transient simulations (NEDC cycle) were carried out - a full engine model was used to obtain detailed information on important parameters. The study shows the necessity to use natural pressure differences or renewable pressure losses if reasonable fuel consumption is to be achieved.
Technical Paper

Locally Resolved Measurement of Gas-Phase Temperature and EGR-Ratio in an HCCI-Engine and Their Influence on Combustion Timing

2007-04-16
2007-01-0182
Laser-based measurements of charge temperature and exhaust gas recirculation (EGR) ratio in an homogeneous charge compression ignition (HCCI) engine are demonstrated. For this purpose, the rotational coherent anti-Stokes Raman spectroscopy technique (CARS) was used. This technique allows temporally and locally resolved measurements in combustion environments through only two small line-of-sight optical accesses and the use of standard gasoline as a fuel. The investigated engine is a production-line four-cylinder direct-injection gasoline engine with the valve strategy modified to realize HCCI-operation. CARS-measurements were performed in motored and fired operation and the results are compared to polytropic calculations. Studies of engine speed, load, valve timing, and injection pressure were conducted showing the strong influence of charge temperature on the combustion timing.
Technical Paper

Real-Time Estimation of the Exhaust Gas Recirculation Ratio Based on Cylinder Pressure Signals

2007-04-16
2007-01-0493
External Exhaust Gas Recirculation, EGR, is a central issue in controlling emissions in up-to-date diesel engines. An empirical model has been developed that calculates the EGR ratio as a function of the engine speed, the engine load and special characteristics of the heat release rate. It was found that three combustion characteristics correlate well with the EGR ratio. These characteristics are the ignition delay, the premixed combustion ratio and the mixing-controlled combustion ratio. The calculation of these characteristics is based on parameter subsets, which were determined using an optimization routine. The model presented was developed based on these optimized characteristics.
Technical Paper

Simulation Of NOx Storage and Reduction Catalyst: Model Development And Application

2007-04-16
2007-01-1117
To fulfill future emission standards for diesel engines, combined after-treatment systems consisting of different catalyst technologies and diesel particulate filters (DPF) are necessary. For designing and optimizing the resulting systems of considerable complexity, effective simulation models of different catalyst and DPF technologies have been developed and integrated into a common simulation environment called ExACT (Exhaust After-treatment Components Toolbox). This publication focuses on a model for the NOx storage and reduction catalyst as a part of that simulation environment. A heterogeneous, spatially one-dimensional (1D), physically and chemically based mathematical model of the catalytic monolith has been developed. A global reaction kinetic approach has been chosen to describe reaction conversions on the washcoat. Reaction kinetic parameters have been evaluated from a series of laboratory experiments.
Technical Paper

Numerical Simulation of Zeolite- and V-Based SCR Catalytic Converters

2007-04-16
2007-01-1136
A numerical model describing the ammonia based SCR process of NOX on zeolite catalysts is presented. The model is able to simulate coated and extruded monoliths. The development of the reaction kinetics is based on a study which compares the activity of zeolite and vanadium based catalysts. This study was conducted in a microreactor loaded with washcoat powder and with crushed coated monoliths. A model for the SCR reaction kinetics on zeolite catalysts is presented. After the parameterization of the reaction mechanism the reaction kinetics were coupled with models for heat and mass transport. The model is validated with laboratory data and engine test bench measurement data over washcoated monolith catalysts. A numerical simulation study is presented, aiming to reveal the differences between zeolite and vanadium based SCR catalysts.
Technical Paper

Engine-Independent Exhaust Gas Aftertreatment Using a Burner Heated Catalyst

2006-10-16
2006-01-3401
Meeting current exhaust emission standards requires rapid catalyst light-off. Closed-coupled catalysts are commonly used to reduce light-off time by minimizing exhaust heat loss between the engine and catalyst. However, this exhaust gas system design leads to a coupling of catalyst heating and engine operation. An engine-independent exhaust gas aftertreatment can be realized by combining a burner heated catalyst system (BHC) with an underfloor catalyst located far away from the engine. This paper describes some basic characteristics of such a BHC system and the results of fitting this system into a Volkswagen Touareg where a single catalyst was located about 1.8 m downstream of the engine. Nevertheless, it was possible to reach about 50% of the current European emission standard EU 4 without additional fuel consumption caused by the BHC system.
Technical Paper

A Real Time NOx Model for Conventional and Partially Premixed Diesel Combustion

2006-04-03
2006-01-0195
In this paper a fast NOx model is presented which can be used for engine optimization, aftertreatment control or virtual mapping. A cylinder pressure trace is required as input data. High calculation speed is obtained by using table interpolation to calculate equilibrium temperatures and species concentrations. Test data from a single-cylinder engine and from a complete six-cylinder engine have been used for calibration and validation of the model. The model produces results of good agreement with emission measurements using approximately 50 combustion product zones and a calculation time of one second per engine cycle. Different compression ratios, EGR rates, injection timing, inlet pressures etc. were used in the validation tests.
Technical Paper

Catalyst Temperature Rise during Deceleration with Fuel Cut

2006-04-03
2006-01-0411
Automotive catalysts close coupled to gasoline engines operated under high load are frequently subjected to bed temperatures well above 950 °C. Upon deceleration engine fuel cut is usually applied for the sake of fuel economy, robustness and driveability. Even though catalyst inlet gas temperatures drop down immediately after fuel cut - catalyst bed temperatures may rise significantly. Sources for catalyst temperature rise upon deceleration with fuel cut are discussed in this contribution.
Technical Paper

Numerical Simulation of NO/NO2/NH3 Reactions on SCR-Catalytic Converters:Model Development and Applications

2006-04-03
2006-01-0468
A 1D+1D numerical model describing the ammonia based SCR process of NO and NO2 on vanadia-titania catalysts is presented. The model is able to simulate coated and extruded monoliths. Basing on a fundamental investigation of the catalytic processes a reaction mechanism for the NO/NO2 - NH3 reacting system is proposed and modeled. After the parameterization of the reaction mechanism the reaction kinetics have been coupled with models for heat and mass transport. Model validation has been performed with engine test bench experiments. Finally the model has been applied to study the influence of NO2 on SCR efficiency within ETC and ESC testcycles, Additional simulations have been conducted to identify the potential for catalyst volume reduction if NO2 is present in the inlet feed.
Technical Paper

On Road Testing of Advanced Common Rail Diesel Vehicles with Biodiesel from the Jatropha Curcas plant

2005-10-23
2005-26-356
This paper addresses the use of neat, indigenous biodiesel in advanced Mercedes-Benz passenger cars. Modern, unmodified EU3 Common-Rail diesel engines with second generation common rail technology were used to determine the effects of neat biodiesel on performance and emission characteristics. The biodiesel was made from the seeds of the Jatropha Curcas plant and sourced from the Central Salt and Marine Chemicals Research Institute in Bhavnagar, India. The production of biodiesel and the vehicle tests are part of a PPP project, funded jointly by the DaimlerChrysler AG and the German DEG. The project aims at providing additional jobs and income in rural Indian areas along with reclaiming unused wasteland. The test vehicles were operated for a cumulative 8000 kilometers with an intention to expose the vehicle and fuel to diverse climatic conditions.
Technical Paper

Emissions Performance of GTL Diesel Fuel and Blends with Optimized Engine Calibrations

2005-05-11
2005-01-2187
The results of a comprehensive experimental investigation into the exhaust emission performance and combustion properties of neat and blended Gas-To-Liquids (GTL) diesel fuel are presented. A sulphur-free European diesel fuel was used as the reference fuel, and two blends of the GTL diesel fuel with the reference fuel, containing 20% and 50% GTL diesel fuel respectively, were investigated. The study was based on a Mercedes Benz 2.2 liter passenger car diesel engine and presents emission data for both the standard engine calibration settings, as well as settings which were optimized to match the characteristics of each fuel. Vehicle emission tests showed that the GTL diesel fuel results in reductions in HC and CO emissions of greater than 90%, while PM is reduced by 30%, and NOx remains approximately unchanged. Engine bench dynamometer tests showed reductions in soot of between 30% and 60%, and NOx reductions of up to 10% with the GTL diesel fuel, depending on the operating point.
Technical Paper

Numerical Simulation of Ammonia SCR-Catalytic Converters: Model Development and Application

2005-04-11
2005-01-0965
A two-dimensional numerical model describing the ammonia based SCR-process on vanadia-titania catalysts is presented. The model is able to simulate coated and extruded monoliths. For the determination of the intrinsic kinetics of the various NH3-NOx reactions, unsteady microreactor experiments were used. In order to account for the influence of transport effects the kinetics were coupled with a fully transient two-phase 1D+1D monolith channel model. The model has been validated extensively with laboratory data and engine test bench measurements. After validation the model has been applied to calculate catalyst NOx conversion maps, which were used to define catalyst sizes. Additional simulations were conducted studying the influence of cell density and NH3-dosage ratio.
Technical Paper

Deactivation of TWC as a Function of Oil Ash Accumulation - A Parameter Study

2005-04-11
2005-01-1097
The oil ash accumulation on modern three way catalyst (TWC) as well as its influence on catalyst deactivation is evaluated as a parameter of oil consumption, kind of oil additive compound and additive concentration. The oil ash accumulation is characterized by XRF and SEM/EDX in axial direction and into the washcoat depth of the catalyst. The deposition patterns of Ca, Mg, P and Zn are discussed. The catalytic activity of the vehicle and engine bench aged catalysts is measured by performing model gas tests and vehicle tests, respectively. The influence of oil ash accumulation on the lifetime emission behavior of the vehicle is discussed.
Technical Paper

NO Laser-Induced Fluorescence Imaging in the Combustion Chamber of a Spray-Guided Direct-Injection Gasoline Engine

2004-06-08
2004-01-1918
In direct-injection gasoline (GDI) engines with charge stratification, minimizing engine-out nitrogen oxide (NOx) emission is crucial since exhaust-gas aftertreatment tolerates only limited amounts of NOx. Reduced NOx production directly lowers the frequency of energy-inefficient catalyst regeneration cycles. In this paper we investigate NO formation in a realistic GDI engine. Quantitative in-cylinder measurements of NO concentrations are carried out via laser-induced fluorescence imaging with excitation of NO (A-X(0,2) band at 248 nm), and subsequent fluorescence detection at 220-240 nm. Engine modifications were kept to a minimum in order to provide results that are representative of practical operating conditions. Optical access via a sapphire ring enabled identical engine geometry as a production line engine. The engine is operated with commercial gasoline (“Super-Plus”, RON 98).
Technical Paper

Catalyst Design for High Performance Engines Capable to Fulfill Future Legislation

2004-03-08
2004-01-1276
To meet future emission levels the industry is trying to reduce tailpipe emissions by both, engine measures and the development of novel aftertreatment concepts. The present study focuses on a joint development of aftertreatment concepts for gasoline engines that are optimized in terms of the exhaust system design, the catalyst technology and the system costs. The best performing system contains a close-coupled catalyst double brick arrangement using a new high thermal stable catalyst technology with low precious metal loading. This system also shows an increased tolerance against catalyst poisoning by engine oil.
Technical Paper

Lube Formulation Effects on Transfer of Elements to Exhaust After-Treatment System Components

2003-10-27
2003-01-3109
After-treatment systems (ATS) consisting of new catalyst technologies and particulate filters will be necessary to meet increasingly stringent global regulations limiting particulate matter (PM) and NOx emissions from heavy duty and light duty diesel vehicles. Fuels and lubes contain elements such as sulfur, phosphorus and ash-forming metals that can adversely impact the efficiency and durability of these systems. Investigations of the impact of lubricant formulation on the transfer of ash-forming elements to diesel particulate filters (DPF) and transfer of sulfur to NOx storage catalysts were conducted using passenger car diesel engine technology. It was observed that for ATS configurations with catalyst(s) upstream of the DPF, transfer of ash-forming elements to the DPF was significantly lower than expected on the basis of oil consumption and lube composition. Sulfur transfer strongly correlated with oil consumption and lubricant sulfur content.
Technical Paper

Aftertreatment Catalyst Design for the New DaimlerChrysler Supercharged 4-Cylinder Engine with Direct Gasoline Injection

2003-03-03
2003-01-1161
The launching of direct injection gasoline engines is currently one of the major challenges for the automotive industry in the European Union. Besides its potential for a notable reduction of fuel consumption, the engine with direct gasoline injection also offers increased power during stoichiometric and stratified operation. These advantages will most probably lead to a significant market potential of the direct injection concept in the near future. In order to meet the increasingly more stringent European emission levels (EURO IV), new strategies for the exhaust gas aftertreatment are required. The most promising technique developed in recent years, especially for NOx conversion in lean exhaust gases, is the so-called NOx storage catalyst.
X