Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A reduced order turbocharging process model for manifold pressure control with EGR

2019-12-19
2019-01-2212
A mean value turbocharged engine model is useful in terms of accuracy and convenience for fuel economy strategies or engine controller development. Turbocharging process is a feedback system with a positive gain, i.e. increasing exhaust work leads to increasing a cycle work. The gain of the feedback system is determined mainly by exhaust work ratio in a cycle and inertia of the turbine. The work ratio was investigated based on engine test with EGR. A turbocharging process model was obtained using the work ratio in a cycle and theoretical equations. The model is applied to investigate manifold absolute pressure response with EGR.
Technical Paper

An Analysis on Cycle-by-cycle Variation and Trace-knock using a Turbulent Combustion Model Considering a Flame Propagation Mechanism

2019-12-19
2019-01-2207
Gasoline engines have the trace-knock phenomena induced by the fast combustion which happens a few times during 100 cycles. And that constrains the thermal efficiency improvement due to limiting the ignition timing advance. So the authors have been dedicating a trace-knock simulation so that we could obtain any pieces of information associated with trace-knock characteristics. This simulation consists of a turbulent combustion model, a cycle-by-cycle variation model and a chemical calculation subprogram. In the combustion model, a combustion zone is considered in order to obtain proper turbulent combustion speed through wide range of engine speed. From a cycle-by-cycle variation analysis of an actual gasoline engine, some trace-knock features were detected, and they were involved in the cycle-by-cycle variation model. And a reduced elementary reaction model of gasoline PRF (primary reference fuel) was customized to the knocking prediction, and it was used in the chemical calculation.
Technical Paper

Multi Attribute Balancing of NVH, Vehicle Energy Management and Drivability at Early Design Stage Using 1D System Simulation Model

2019-01-09
2019-26-0178
Improving fuel efficiency often affects NVH performance. Modifying a vehicle’s design in the latter stages of development to improve NVH performance is often costly. Therefore, to optimize the cost performance, a Multi-Attribute Balancing (MAB) approach should be employed in the early design phases. This paper proposes a solution based on a unified 1D system simulation model across different vehicle performance areas. In the scope of this paper the following attributes are studied: Fuel economy, Booming, Idle, Engine start and Drivability. The challenges to be solved by 1D simulation are the vehicle performance predictions, taking into account the computation time and accuracy. Early phase studies require a large number of scenarios to evaluate multiple possible parameter combinations employing a multi-attribute approach with a systematic tool to ease setup and evaluation according to the determined performance metrics.
Technical Paper

Development of Momentum Source Model of Vehicle Turbocharger Turbine

2016-04-05
2016-01-0210
Recently, the evaluation of the thermal environment of an engine compartment has become more difficult because of the increased employment and installation of turbochargers. This paper proposes a new prediction model of the momentum source for the turbine of a turbocharger, which is applicable to three-dimensional thermal fluid analyses of vehicle exhaust systems during the actual vehicle development phase. Taking the computational cost into account, the fluid force given by the turbine blades is imitated by adding an external source term to the Navier-Stokes equations corresponding to the optional domain without the computational grids of the actual blades. The mass flow rate through the turbine, blade angle, and number of blade revolutions are used as input data, and then the source is calculated to satisfy the law of the conservation of angular momentum.
Technical Paper

A Reduced Order Turbo-Charging Model for Real Time Engine Torque Profile Control

2015-11-17
2015-32-0766
Torque profile control is one of required technologies for propulsion engines. A smaller parametric model is more preferable for control algorithm design and evaluation. Mean value engine torque can be obtained from throttle opening change using a transfer function. A transfer function for a turbocharged engine was investigated with thermo-dynamic equations for a turbine and a compressor and test data. A small turbocharged engine was tested to model the air transfer process. Turbine speed was measured with temperatures, pressures and air mass flow. Turbine speed response is like a first order system to air mass flow into a combustion chamber. The pressure ratio at the compressor is approximated by a curve proportional to the turbine speed square. Based on those findings, a reduced order model for describing dynamic air transfer process with a turbocharger was constructed. The proposed model is compact and suitable for engine torque control design and controller implementation.
Technical Paper

A Reduced Order Model for a Passenger Car Turbo Charging System and Application to Engine Output Torque Profile Control

2015-09-01
2015-01-1981
Downsizing engines with a turbocharging system have been widely applied to passenger cars to improve fuel economy. Engine torque response to accelerator operation is one of important features in addition to steady state performance of the system. Torque profile management for turbocharged internal combustion engines is one of required technologies. A turbocharging system for a car is a system with a positive feedback loop in which compressed air drives the compressor after the combustion process. A reduced order model was derived for the charging system. Pressure ratio of a compressor is proportional to square of turbine speed and the turbine speed is a first order delay system to throttle opening in the model. Model structure was designed from mathematical equations that describe turbine and compressor works. Model parameters were identified from measured data. An output torque profile control strategy based on the derived model is investigated.
Technical Paper

A Study on Practical Use of Diesel Combustion Calculation and Development of Automatic Optimizing Calculation System

2015-09-01
2015-01-1845
A KIVA code which is customized for passenger car's diesel engines is linked with an engine performance simulator and demonstrated with our optimizing calculation system. Aiming to fulfill our target calculation speed, the combustion model of the KIVA code is changed from a chemical reaction calculation method to a chemical equilibrium calculation method which is introduced a unique technique handling chemical species maps. Those maps contain equilibrium mole fraction data of chemical species according to equivalence ratio and temperature. Linking the KIVA code to the engine simulator helps to evaluate engine performance by indicated mean effective pressure (IMEP). The optimizing calculation system enables to obtain response surfaces. Observing the response surfaces, clear views of engine performance characteristics can be seen. The overview of this calculation system and some examples of the calculation are shown in this paper.
Journal Article

A Study on Knocking Prediction Improvement Using Chemical Reaction Calculation

2015-09-01
2015-01-1905
Compression ratio of newly developed gasoline engines has been increased in order to improve fuel efficiency. But in-cylinder pressure around top dead center (TDC) before spark ignition timing is higher than expectation, because the low temperature oxidization (LTO) generates some heat. The overview of introduced calculation method taking account of the LTO heat of unburned gas, how in-cylinder pressure is revised and some knowledge of knocking prediction using chemical kinetics are shown in this paper.
Technical Paper

Human Driving Behavior Analysis and Model Representation with Expertise Acquiring Process for Controller Rapid Prototyping

2011-04-12
2011-01-0051
Driving car means to control a vehicle according to a target path, e.g. road and speed, with some constraints. Human driving models have been proposed and applied for simulations. However, human control in driving has not been analyzed sufficiently comparing with that of machine control system in term of control theory. Input - output property with internal information processing is not easily measured and described. Response of human driving is not as quicker as that of machine controller but human can learn vehicle response to driving operation and predict target changes. Driving behavior of an expert driver and a beginner in an emission test cycle was measured and difference in target speed tracking was looked into with performance indices. The beginner's operation was less stable than that of the expert. Transfer function of the vehicle system was derived based on linearized model to investigate human driving behavior as a tracking controller in the system.
Technical Paper

Grammatical Evolution Based Tool for Predicting Multivariable Response Surface for Laser Lap Welding

2008-04-14
2008-01-1372
The problem of predicting the quality of weld is critical to manufacturing. A great deal of data is collected under multiple conditions to predict the quality. The data generated at Daimler Chrysler has been used to develop a model based on grammatical evolution. Grammatical Evolution Technique is based on Genetic Algorithms and generates rules from the data which fit the data. This paper describes the development of a software tool that enables the user to choose input variables such as the metal types of top and bottom layers and their thickness, intensity and speed of laser beam, to generate a three dimensional map showing weld quality. A 3D weld quality surface can be generated in response to any of the two input variables picked from the set of defining input parameters. This tool will enable the user to pick the right set of input conditions to get an optimal weld quality. The tool is developed in Matlab with Graphical User Interface for the ease of operation.
Technical Paper

Development of High-Performance PP Masterbatch for Interior Parts

2007-08-05
2007-01-3733
The authors have developed a high-performance talc masterbatch (hereinafter HPTMB) to achieve sufficient flexural modulus and impact resistance at the same time using inexpensive conventional PP as a base resin. Highly compressed fine talc and elastomers were selected as the filler and the impact resistance improver by considering their dispersion in the molded parts. The mixing process was also optimized. In order to stabilize impact resistance after molding, several elastomers were selected based on molecular weights and melting points. The developed HPTMB showed excellent balanced properties for instrument panels using inexpensive conventional PP as a base resin. The HPTMB is applied to the instrument panel of a Mitsubishi mini car. This technology will enable us to reduce the material cost by consolidating automotive interior plastic materials as well as by using available conventional PP.
Technical Paper

New DOC for Light Duty Diesel DPF System

2007-07-23
2007-01-1920
A new state of the art DOC (Diesel Oxidation Catalyst) having superior light-off and exothermic activity for forced regeneration compared to conventional Pt base passive DOC, was investigated for LDD application. The DOC uses the latest Pt/Pd technology resulting cost effective DPF system. The newly developed DOC demonstrated improved catalytic activities from Pt only DOC in model gas or engine bench tests. In this study, DOC at early development stage showed excellent light-off activity in model gas and engine bench test compared to conventional Pt only DOC, however, it showed “extinction” phenomenon which is one of the deactivation mode while the post injection and it was observed when post injection operation was done at lower DOC inlet temperatures, e.g. below 250 C. Temperature profiles along diameter and length into DOC bed while active regeneration suggested extinction would be caused by fouling of supplied hydrocarbons derived from diesel fuel.
Technical Paper

Experimental Determination of an Engine's Inertial Properties

2007-05-15
2007-01-2291
Determination of an engine's inertial properties is critical during vehicle dynamic analysis and the early stages of engine mounting system design. Traditionally, the inertia tensor can be determined by torsional pendulum method with a reasonable precision, while the center of gravity can be determined by placing it in a stable position on three scales with less accuracy. Other common experimental approaches include the use of frequency response functions. The difficulty of this method is to align the directions of the transducers mounted on various positions on the engine. In this paper, an experimental method to estimate an engine's inertia tensor and center of gravity is presented. The method utilizes the traditional torsional pendulum method, but with additional measurement data. With this method, the inertia tensor and center of gravity are estimated in a least squares sense.
Technical Paper

Improving Low Frequency Torsional Vibrations NVH Performance through Analysis and Test

2007-05-15
2007-01-2242
Low frequency torsional vibrations can be a significant source of objectionable vehicle vibrations and in-vehicle boom, especially with changes in engine operation required for improved fuel economy. These changes include lower torque converter lock-up speeds and cylinder deactivation. This paper has two objectives: 1) Examine the effect of increased torsional vibrations on vehicle NVH performance and ways to improve this performance early in the program using test and simulation techniques. The important design parameters affecting vehicle NVH performance will be identified, and the trade-offs required to produce an optimized design will be examined. Also, the relationship between torsional vibrations and mount excursions, will be examined. 2) Investigate the ability of simulation techniques to predict and improve torsional vibration NVH performance. Evaluate the accuracy of the analytical models by comparison to test results.
Technical Paper

Validation of Vehicle NVH Performance using Experimental Modal Testing and In-Vehicle Dynamic Measurements

2007-05-15
2007-01-2320
NVH targets for future vehicles are often defined by utilizing a competitive benchmarking vehicle in conjunction with an existing production and/or reference vehicle. Mode management of full vehicle modes is one of the most effective and significant NVH strategies to achieve such targets. NVH dynamic characteristics of a full vehicle can be assessed and quantified through experimental modal testing for determination of global body mode resonance frequency, damping property, and mode shape. Major body modes identified from full vehicle modal testing are primarily dominated by the vehicle's body-in-white structure. Therefore, an estimate of BIW modes from full vehicle modes becomes essential, when only full vehicle modes from experimental modal testing exist. Establishing BIW targets for future vehicles confines the fundamental NVH behavior of the full vehicle.
Technical Paper

Multi-Disciplinary Aerodynamics Analysis for Vehicles: Application of External Flow Simulations to Aerodynamics, Aeroacoustics and Thermal Management of a Pickup Truck

2007-04-16
2007-01-0100
During the design process for a vehicle, the CAD surface geometry becomes available at an early stage so that numerical assessment of aerodynamic performance may accompany the design of the vehicle's shape. Accurate prediction requires open grille models with detailed underhood and underbody geometry with a high level of detail on the upper body surface, such as moldings, trim and parting lines. These details are also needed for aeroacoustics simulations to compute wall-pressure fluctuations, and for thermal management simulations to compute underhood cooling, surface temperatures and heat exchanger effectiveness. This paper presents the results of a significant effort to capitalize on the investment required to build a detailed virtual model of a pickup truck in order to simultaneously assess performance factors for aerodynamics, aeroacoustics and thermal management.
Technical Paper

248mm Elliptical Torque Converter from DaimlerChrysler Corporation

2007-04-16
2007-01-0241
The need for efficient space utilization has provided a framework for the design of a 248mm family of torque converters that supports a wide choice of engine and transmission combinations. The axial length of the part and its weight have been substantially reduced while the performance range has been broadened without degradation of efficiency. The new converter operates in an expanded slipping clutch mode. It significantly contributes to the performance and fuel economy improvements of related vehicles. To meet the cost target, the comprehensive lineup and the resulting complexity have required a high level of component interchangeability. During the design phase, the manufacturing core competencies were scrutinized and process redundancies eliminated, both resulting in optimization of material selection and applicable technology.
Technical Paper

Tailor-Welded Aluminum Blanks for Liftgate Inner

2007-04-16
2007-01-0421
Tailor welded steel blanks have long been applied in stamping of automotive parts such as door inner, b-pillar, rail, sill inner and liftgate inner, etc. However, there are few known tailor welded aluminum blanks in production. Traditional laser welding equipment simply does not have the capability to weld aluminum since aluminum has much higher reflectivity than steel. Welding quality is another issue since aluminum is highly susceptible to pin holes and undercut which leads to deterioration in formability. In addition, high amount of springback for aluminum panels can result in dimension control problem during assembly. A tailor-welded aluminum blank can help reducing dimension variability by reducing the need for assembly. In this paper, application of friction stir and plasma arc welded blanks on a liftgate inner will be discussed.
Technical Paper

Balance between Reliability and Robustness in Engine Cooling System Optimal Design

2007-04-16
2007-01-0594
This paper explores the trade-off between reliability-based design and robustness for an automotive under-hood thermal system using the iSIGHT-FD environment. The interaction between the engine cooling system and the heating, ventilating, and air-conditioning (HVAC) system is described. The engine cooling system performance is modeled using Flowmaster and a metamodel is developed in iSIGHT. The actual HVAC system performance is characterized using test bench data. A design of experiment procedure determines the dominant factors and the statistics of the HVAC performance is obtained using Monte Carlo simulation (MCS). The MCS results are used to build an overall system response metamodel in order to reduce the computational effort. A multi-objective optimization in iSIGHT maximizes the system mean performance and simultaneously minimizes its standard deviation subject to probabilistic constraints.
Technical Paper

Correlating an Air Motion Number to Combustion Metrics and Initial Flame Kernel Development

2007-04-16
2007-01-0653
This study attempts to develop a correlation between an airflow motion number, combustion burn rates, and initial flame kernel development. To accomplish this task, several motion plates were evaluated on a flowbench in order to calculate a motion number that would represent the dynamic motion in the combustion chamber. Afterwards, the plates were tested on a spark ignited engine at several part throttle conditions while gathering cylinder pressure measurements. These cylinder pressure measurements would then yield the combustion burn rates for each plate. In addition to the combustion measurements, the flame kernel growth, velocity and direction of the flame kernel were measured using an AVL Visio-flame. Finally, the data was evaluated and an attempt to correlate the motion number of the plates to the different measurements for describing combustion was made.
X