Refine Your Search

Topic

Author

Search Results

Technical Paper

Potential and Challenges of Using Biomass-Based Resources in Bhutan

2024-04-09
2024-01-2494
Bhutan is a small nation in the eastern Himalayas, between two of the world's largest neighbors and fastest-growing economies; China, and India. The GDP of the country is $2.707 Billion as of 2022. Bhutan’s largest renewable source is hydropower, which has a known potential of 30,000 MW. However, it has only been able to harvest only 1,480 MW (5% of the potential). The current overall electrification rate is 99% overall with 98.4% in rural areas. It exports 75.5% of total electricity generated in the country to India. However, the reliable supply of electricity remains a big challenge. The government is also pushing the use of renewable energy sources like solar and wind to diversify the energy mix and enhance the power security of the country. The share of renewable energy is very minimal at present amounting to 723 kW Solar PV and 600 kW Wind power.
Technical Paper

Design, Control Surface Optimization and Stability Analysis of a Blended Wing Body Aircraft (BWB) Unmanned Aerial Vehicle

2021-03-02
2021-01-0040
Unmanned Aerial Vehicles (UAVs) are becoming an effective way to serve humanitarian relief efforts during environmental disasters. The process of designing such UAVs poses challenges in optimizing design variables such as maneuverability, payload capacity and maximizing endurance because the designing of a BWB takes into account the interdependency between the stability and aerodynamic performance. The Blended Wing Body is an unconventional aircraft configuration which offers enhanced performance over conventional UAVs. In this study the designing of a BWB is investigated with an aim to achieve structurally sound and aerodynamically stable configuration. The design has been done by taking into consideration the side and top view airfoil for fuselage, because fuselage is a major lift generating portion in the UAV. For designing the control surfaces, the two major requirements for a controlled and safe flight of a UAV are its stability and maneuverability.
Technical Paper

Optimization of Race Car Front Splitter Placement Using CFD

2019-12-30
2019-01-5097
The behavior of flow over an automobile’s body has a large effect on vehicle performance, and automobile manufacturers pay close attention to the minimal of the details that affect the performance of the vehicle. An imbalance of downforce between the front and rear portion of the vehicle can lead to significant performance hindrances. Worldwide efforts have been made by leading automobile manufacturers to achieve maximum balanced downforce using aerodynamic elements of vehicle. One such element is the front splitter. This study aims to analyze the aerodynamic performance of automobile at various splitter overhang lengths using Computational Fluid Dynamics (CFD). For the purpose of analysis, a three-dimensional (3D) CFD study was undertaken in ANSYS Fluent using the realizable k-ε turbulence model, based on the 3D compressible Reynolds-Averaged Navier-Stokes (RANS) equations.
Technical Paper

Aerodynamic Effect of Aspect Ratio of Spherical Depressions on the Bonnet of Hatchback Cars

2019-12-30
2019-01-5096
Flow separation is one of the primary causes of increase in form drag in vehicles. This phenomenon is also visible in the case of lightweight vehicles moving at high speed, which greatly affects their aerodynamics. Spherical depressions maybe used to delay the flow separation and decrease drag in such vehicles. This study aims for optimization of aspect ratio (AR) of spherical depressions on hatchback cars. Spherical depressions were created on the bonnet of a generalized light vehicle Computer-Aided Design (CAD) model. The diameter of each spherical depression was set constant at 60 mm, and the center-to-center distance between consecutive spherical depressions is fixed at 90 mm. The AR of spherical depressions was taken as the parameter that was varied in each model. ARs 2, 4, 6, and 8 were considered for the current investigation. Three-dimensional (3D) CFD analyses were then performed on each of these models using a validated computational model.
Technical Paper

Experimental Study of Sliding Wear Behavior of the Casted Lead Bronze Journal Bearing Material

2019-04-02
2019-01-0824
Lead (Pb) bronze material is used for the manufacturing of bearings. Lead provides less friction and wear-related properties to bronze. During working of the bearings the lead contained micro-chips mixes with the lubricant oil and makes its disposal difficult. Rotational speed and applied load are the two main parameters on which the working and amount of wear from the bearing depend. So it is important to find out an optimum set of speed and pressure on which a particular bearing should operate to minimize the wear and hence minimize the lead-contaminated lubricating oil. In the present work, Taguchi technique has been used to find out the optimum values of speed and pressure. To measure the specific wear rate (SWR) and coefficient of friction (COF) of the leaded bronze material, it is made to slide on a mild steel material and amount of wear and coefficient of friction has been recorded using a pin on disc machine using ASTM-G99 standards.
Technical Paper

Experimental Studies on Mechanical Properties of Metal Matrix Composites Reinforced with Natural Fibres Ashes

2019-04-02
2019-01-1123
Metal matrix composites have a large range of applications in the automobile industry due to its characteristics and properties. Al-based MMC have aluminum as matrix metal that has properties which are well concerned with the automobile industry. Some of these properties are high strength to weight ratio and lightweight. In this paper we are trying to develop aluminum-based metal matrix composite (MMC) reinforced with natural fibers ashes, we are using fine ashes of Sugarcane (bagasse), Groundnut Shell Ash (GSA), Rice Husk Ash (RHA) and Coconut shell (Jute) ash, different effects are investigated for different percentage of reinforcing material which is being produced by burning in a free atmosphere. Ball milling is used for making fine particle size of different natural fibers ash. Nine samples were made by the stir casting process consisting of Al6063 as base metal and different concentration of reinforcement.
Technical Paper

Effect of Using Exhaust Gas Recirculation (EGR) on the Emission Characteristics of the CI Engine Fuelled by Acetone-Butanol-Ethanol (ABE) Diesel Blends

2019-04-02
2019-01-0748
The power generation, agriculture, and transportation sectors are dominated by diesel engines due to better thermal efficiency and durability. Diesel engines are also a major contributor to the air pollutants such as NOx and particulate matter. Acetone-butanol-ethanol (ABE) is considered a promising alternative fuel as it emits less pollutants compared to conventional fuels. In current work, the ABE used was of the ratio (3:6:1) and four samples were prepared for engine trial ABE (10%90%diesel), ABE (20%80%diesel), ABE (30%70%diesel) and ABE (40%60%diesel). Their physio-chemical properties like kinematic viscosity, density, specific gravity and calorific value were checked and tested on compression ignition engine at different operating parameters. The experimental work was conducted upon Kirloskar 4-stroke single cylinder, vertical, air-cooled 661cc compression ignition engine at different speeds and loads.
Technical Paper

Study of Performance and Emission Characteristics of Propan-2-ol and Gasoline Fuel Blends in an Unmodified Spark Ignition Engine

2019-04-02
2019-01-0793
In view of the rapid depletion, increasing prices and uneven distribution of conventional petroleum fuels; the interest in the use of alternative fuels has increased exponentially. Fuels such as biodiesel & alcohol have been evaluated both at experimental and commercial scale due to improved emission characteristics as compared to conventional fuels. Alcohols are oxygenated and result in improving the engine performance. As a blend with conventional gasoline, the alcohols enhance the premixed and diffusive combustion phase which improves the combustion efficiency. The present investigation evaluates studies on stability and homogeneity along with physicochemical properties like density, viscosity, calorific value, copper-strip corrosion and solubility at room temperature of Propan-2-ol and gasoline blends. Comprehensive engine trials on unmodified petrol engine fuelled with blends of Propan-2-ol and gasoline blends in the proportions of 5, 10, 15 and 20% by volume have been conducted.
Technical Paper

Optimization of Biodiesel Production from Deodar Oil Using Response Surface Methodology [RSM]

2018-10-23
2018-01-5041
Biodiesel (fatty acid methyl ester, or FAME) can be used as an alternative fuel for diesel engines which is produced by the chemical reaction of vegetable oil or animal fat with an alcohol such as ethanol or methanol in the presence of a catalyst. The growing interest in biodiesel is because of the similarity in its properties when compared with the diesel fuel as well as various benefits it provides such as lower soot emissions, less dependency on crude oil, etc. The optimization of experimental parameters, such as catalyst concentration, molar ratio of alcohol to oil, and reaction time, on the transesterification for the production of deodar methyl ester was performed in this article. Optimization of the transesterification process of deodar oil was achieved by a three-factorial central composite design (CCD) using response surface methodology (RSM) in 20 experimental runs. The RSM was performed to determine the optimum operating conditions and to optimize the biodiesel yield.
Technical Paper

Process Optimization of Biodiesel Production from Cedar Wood Oil (Cedrus deodara) Using Response Surface Methodology

2018-04-03
2018-01-0665
As petroleum prices are rising continuously biodiesel production has been receiving worldwide awareness. Thus for its production the requirement for non-edible and unidentified feedstocks has risen. This research presents the production and process optimization of biodiesel obtained from non-edible feedstock namely cedar wood(Cedrus deodara) oil, with response surface methodology using statistical software minitab 18.0. Cedar Wood (Cedrus deodara) is a tree accessible in different parts of the world like India and Nepal. In Indian context, these are available in abundance especially in the forests of Himalayan region as a non-edible feedstock. Methyl ester of Cedar Wood Oil is prepared by process known as Transesterification. The FFA content of cedar wood oil was 0.5% which is below the 2% suggested for the application of the one step alkaline transesterification method.
Technical Paper

Study of Starting Friction during the Running of Plain Journal Bearing under Hydrodynamic Lubrication Regime

2018-04-03
2018-01-0838
Study of starting friction during the running of the engineering application has an important role in designing them, especially working at low speed and high load conditions. A significant portion of research and development today is concentrated on saving the energy by reducing the friction. The present paper addresses the measurement technique and analysis of the starting friction during the running of the journal bearing. The experiments were performed during the hydrodynamic lubrication regime using SAE 15W-30 lubricating oil. A journal bearing having journal diameter as 22 mm, length/diameter ratio 1 and 0.027 mm radial clearance has been designed and fabricated to test the starting friction. Analysis of starting friction and average friction torque during the running of journal bearing was done at 900, 1150, 1400, 1650, 1900, 2150 and 2400 revolution per minute (rpm) speed of the journal at load values of 250, 400 and 500 N.
Technical Paper

Study of Performance and Emissions Parameters of Single Cylinder Diesel Engine Fuelled with Micro Emulsion of Jatropha Oil and Ethanol

2017-10-08
2017-01-2331
The use of alternative fuel has many advantages and the main ones are its renewability, biodegradability with better quality exhaust gas emission, which do not contribute to raise the level of carbon dioxide in the atmosphere. The use of non-edible vegetables oils as an alternative fuels for diesel engine is accelerated by the energy crisis due to depletion of resources and increase in environmental problems. In Asian countries like India, great need of edible oil as a food so cannot use these oils as alternative fuels for diesel engine. However there are many issues related to the use of vegetable oils in diesel engine that is high viscosity, low calorific value, high self-ignition temperature etc. Jatropha curcas has been promoted in India as a sustainable substitute to diesel fuel. This research prepared micro emulsions of ethanol and Jatropha vegetable oil in different ratio and find out the physico-chemical parameters to compare with mineral diesel oil.
Technical Paper

Numerical Investigation on Aerodynamic Effects of Vanes and Flaps on Automotive Underbody Diffusers

2017-09-19
2017-01-2163
The automotive underbody diffuser is an expansion device which works by speeding up the air flowing underneath a vehicle. This reduces the pressure below the vehicle thereby increasing downforce. When designed properly, it can lead to a massive gain in downforce and even a reduction in drag. However, a majority of the research and development is restricted to motorsport teams and supercar manufacturers and is highly secretive. Most of the publicly available research has been done for very simple shapes (bluff bodies) to study the effects of ground clearance and rake angle. Very little research has been done for complex geometries with vanes, flaps and vortex generators. This paper aims to investigate the effects of the addition of vanes/strakes and flaps, their location as well as angle, on diffuser performance. Computational Fluid Dynamics simulations have been carried out using three dimensional, steady state RANS equations with the k-ε turbulence model on STAR CCM+ V9.06.
Technical Paper

Performance Based Optimization of Intake and Injection Parameters of an Advanced Compressed Air Engine Kit

2017-03-28
2017-01-1291
The increment in the application of fossil fuels is leading the world into a catastrophic state both environmentally and economically. Current demand for fuels exceeds its imminent supply and rather sooner than later energy demands will have to shift towards non-conventional fuels to cope with the situation. With constant developments in the automotive sector, several solutions have been found but none have been as good as gasoline to substitute it in the commercial market. One such solution being compressed air might solve this global fuel crisis, which serves a glowing advantage of being cheaper and greener as it produces zero tail-pipe emissions, and can help in decreasing automobile’s contribution to global warming. Though the potential energy stored in the compressed air limits its application to light duty vehicles and still there will be a need for other alternative solutions for the heavy duty vehicles in order to relieve the pressure from the fossil fuels.
Technical Paper

Design and Simulated Analysis of Regenerative Suspension System with Hydraulic Cylinder, Motor and Dynamo

2017-03-28
2017-01-1284
With the ever increasing number of vehicles on road and the rise of the electric and automated vehicles, it is important to minimize the consumption of energy by each vehicle, regenerative braking is in wide use today, however, the research in the field of regenerative suspension is limited. The regenerative suspension has huge capabilities in power generation especially on third world roads having rather bumpy rides. A huge amounts of energy is wasted in shock absorbers due to friction. This study emphasizes on the implementation of the energy present in the suspension system by replacing the Shock Absorber with a Energy transfer system Involving Hydraulic cylinder, Hydraulic Motor and Dynamo. The energy which is usually lost as heat due to friction in conventional Suspension is used to drive a dynamo through Hydraulic System designed in this paper and electricity is generated.
Technical Paper

Effect of Exhaust Gas Recirculation on Performance of an SI Engine Fueled with Methanol-Gasoline and Ethanol-Gasoline Blend with Hydrogen Boosting

2017-03-28
2017-01-1282
Dependency and increase in use of fossil fuels is leading to its depletion and raises serious environmental concerns. There are international obligations to reduce emissions and requirements to strengthen security of fuel supply which is pressuring the automobile industry to use cleaner and more sustainable fuels. Hydrogen fits these criteria as it is not just an abundant alternative but also a clean propellant and Hydrogen engines represent an economic alternative to fuel cells. In the present investigation, EGR has been used on hydrogen boosted SI engine running on gasoline-methanol and ethanol-gasoline blends to determine the additional advantages of the same compared to pure gasoline operation and gasoline-methanol and ethanol-gasoline blends without EGR.
Technical Paper

A Study on Homogeneous Combustion in Porous Medium Internal Combustion Engine: A Review

2017-03-28
2017-01-0788
Rapid depletion in fuel resources owing to the low efficiency of current automobiles has been a major threat to future generations for fuel availability as well as environmental health. Advanced new generation of internal combustion (IC) engines are expected to have far better emissions levels both gaseous (NOx and CO) and particulate matter, at the same time having far lower fuel consumption on a wide range of operating condition. These criteria could be improved having a homogeneous combustion process in an engine. Homogeneous mixing of fuel and air in HCCI leads to cleaner combustion and lower emissions. Since peak temperatures are significantly lower than in typical SI engines, NOx levels and soot are reduced to some extent. Because of absence of complete homogeneous combustion but quasi homogeneous combustion present in HCCI, there is still a possibility of further reducing the emissions as well as enhancing the engine performance.
Technical Paper

Development of Fuzzy Based Decision Structure for Automotive Airbag Control Unit

2017-01-10
2017-26-0349
This study is an attempt to develop a decision support and control structure based on fuzzy logic for deployment of automotive airbags. Airbags, though an additional safety feature in vehicles, have proven to be fatal at various instances. Most of these casualties could have been avoided by using seat belts in the intended manner that is, as a primary restraint system. Fatalities can be prevented by induction of smart systems which can sense the presence and differentiate between passengers and conditions prevailing at a particular instant. Fuzzy based decision making has found widespread use due to its ability to accept non-binary or grey data and compute a reliable output. Smart airbags also allow the Airbag Control Unit to control inflation speed depending on instantaneous conditions.
Technical Paper

Enhancement in Performance and Emission Characteristics of Diesel Engine by Adding Alloy Nanoparticle

2016-10-17
2016-01-2249
Enhancement of combustion behavior of conventional liquid fuel using nanoscale materials of different properties is an imaginative and futuristic topic. This experiment is aimed to evaluate the performance and emission characteristics of a diesel engine when lade with nanoparticles of Cu-Zn alloy. The previous work reported the effect of metal/metal oxide or heterogeneous mixture of two or more particles; less work had been taken to analyze the homogeneous mixture of metals. This paper includes fuel properties such as density, kinematic viscosity, calorific value and performance measures like brake thermal efficiency (BTE), brake specific fuel consumption (BSFC) and emission analysis of NOX, CO, CO2, HC. For the same solid concentration, nano-fuel is compared with base fuel at different engine loads; and its effect when lade at different concentrations.
Technical Paper

Performance Evaluation and Emission Characteristics of Biodiesel-Alcohol-Diesel Blends Fuelled in VCR Engine

2016-10-17
2016-01-2265
The diesel engine has for many decades now assumed a leading role in both the medium and medium-large transport sector due to their high efficiency and ability to produce high torque at low RPM. Furthermore, energy diversification and petroleum independence are also required by each country. In response to this, biodiesel is being considered as a promising solution due to its high calorific value and lubricity conventional petroleum diesel. However, commercial use of biodiesel has been limited because of some drawbacks including corrosivity, instability of fuel properties, higher viscosity, etc. Biodiesel are known for lower CO, HC and PM emissions. But, on the flip side they produce higher NOx emissions. The addition of alcohol to biodiesel diesel blend can help in reducing high NOx produced by the biodiesel while improving some physical fuel properties.
X