Refine Your Search

Topic

Author

Search Results

Technical Paper

Quantitative Estimate of the Relation Between Rolling Resistance on Fuel Consumption of Class 8 Tractor Trailers Using Both New and Retreaded Tires

2014-09-30
2014-01-2425
Road tests of class 8 tractor trailers were conducted by the US Environmental Protection Agency (EPA) on a new and retreaded tires of varying rolling resistance in order to provide estimates of the quantitative relation between rolling resistance and fuel consumption. Reductions in fuel consumption were measured using the SAE J1231 (reaffirmation of 1986) test method. Vehicle rolling resistance was calculated as a load-weighted average of the rolling resistance (as measured by ISO28580) of the tires in each axle position. Both new and retreaded tires were tested in different combinations to obtain a range of vehicle coefficient of rolling resistance from a baseline of 7.7 kg/ton to 5.3 kg/ton. Reductions in fuel consumption displayed a strong linear relationship with coefficient of rolling resistance, with a maximum reduction of fuel consumption of 10 percent relative to the baseline.
Technical Paper

Energy Efficient Routing for Electric Vehicles using Particle Swarm Optimization

2014-04-01
2014-01-1815
Growing concerns about the environment, energy dependency, and unstable fuel prices have increased the market share of electric vehicles. This has led to an increased demand for energy efficient routing algorithms that are optimized for electric vehicles. Traditional routing algorithms are focused on finding the shortest distance or the least time route between two points. These approaches have been working well for fossil fueled vehicles. Electric vehicles, on the other hand, require different route optimization techniques. Negative edge costs, battery power and capacity limits, as well as vehicle parameters that are only available at query time, make the task of electric vehicle routing a challenging problem. In this paper, we present a simulated solution to the energy efficient routing for electric vehicles using Particle Swarm Optimization. Simulation results show improvements in the energy consumption of the electric vehicle when applied to a start-to-destination routing problem.
Technical Paper

A Technique to Predict Thermal Buckling in Automotive Body Panels by Coupling Heat Transfer and Structural Analysis

2014-04-01
2014-01-0943
This paper describes a comprehensive methodology for the simulation of vehicle body panel buckling in an electrophoretic coat (electro-coat or e-coat) and/or paint oven environment. The simulation couples computational heat transfer analysis and structural analysis. Heat transfer analysis is used to predict temperature distribution throughout a vehicle body in curing ovens. The vehicle body temperature profile from the heat transfer analysis is applied as an input for a structural analysis to predict buckling. This study is focused on the radiant section of the curing ovens. The radiant section of the oven has the largest temperature gradients within the body structure. This methodology couples a fully transient thermal analysis to simulate the structure through the electro-coat and paint curing environments with a structural, buckling analysis.
Technical Paper

CFD Analysis of Automotive Bodies in Static Pressure Gradients

2014-04-01
2014-01-0612
Recently, the Two-Measurement correction method that yields a wake distortion adjustment for open jet wind tunnels has shown promise of being able to adjust for many of the effects of non-ideal static pressure gradients on bluff automotive bodies. Utilization of this adjustment has shown that a consistent drag results when the vehicle is subjected to the various gradients generated in open jet wind tunnels. What has been lacking is whether this consistent result is independent of the other tunnel interference effects. The studies presented here are intended to fill that gap and add more realistic model and wind tunnel conditions to the evaluations of the performance of the two-measurement technique. The subject CFD studies are designed to greatly reduce all wind tunnel interference effects except for the variation of the non-linear static pressure gradients. A zero gradient condition is generated by simulating a solid wall test section with a blockage ratio of 0.1%.
Technical Paper

Automotive Vehicle Body Temperature Prediction in a Paint Oven

2014-04-01
2014-01-0644
Automotive vehicle body electrophoretic (e-coat) and paint application has a high degree of complexity and expense in vehicle assembly. These steps involve coating and painting the vehicle body. Each step has multiple coatings and a curing process of the body in an oven. Two types of heating methods, radiation and convection, are used in the ovens to cure coatings and paints during the process. During heating stage in the oven, the vehicle body has large thermal stresses due to thermal expansion. These stresses may cause permanent deformation and weld/joint failure. Body panel deformation and joint failure can be predicted by using structural analysis with component surface temperature distribution. The prediction will avoid late and costly changes to the vehicle design. The temperature profiles on the vehicle components are the key boundary conditions used to perform structure analysis.
Journal Article

Comparison of Austempering and Quench-and-Tempering Processes for Carburized Automotive Steels

2013-04-08
2013-01-0173
Carburized parts often see use in powertrain components for the automotive industry. These parts are commonly quenched and tempered after the carburizing process. The present study compared the austempering heat treatment to the traditional quench-and-temper process for carburized parts. Samples were produced from SAE 8620, 4320, and 8822 steels and heat treated across a range of conditions for austempering and for quench-and-tempering. Distortion was examined through the use of Navy C-Ring samples. Microstructure, hardness, and Charpy toughness were also examined. X-ray diffraction was used to compare the residual stress found in the case of the components after the quench-and-temper and the austempering heat treatments. Austempering samples showed less distortion and higher compressive residual stresses, while maintaining comparable hardness values in both case and core. Toughness measurements were also comparable between both processes.
Journal Article

Development of a Standard Spin Loss Test Procedure for FWD-Based Power Transfer Units

2013-04-08
2013-01-0361
As vehicle fuel economy continues to grow in importance, the ability to accurately measure the level of efficiency on all driveline components is required. A standardized test procedure enables manufacturers and suppliers to measure component losses consistently and provides data to make comparisons. In addition, the procedure offers a reliable process to assess enablers for efficiency improvements. Previous published studies have outlined the development of a comprehensive test procedure to measure transfer case speed-dependent parasitic losses at key speed, load, and environmental conditions. This paper will take the same basic approach for the Power Transfer Units (PTUs) used on Front Wheel Drive (FWD) based All Wheel Drive (AWD) vehicles. Factors included in the assessment include single and multi-stage PTUs, fluid levels, break-in process, and temperature effects.
Journal Article

Online Driveline Fatigue Data Acquisition Method

2013-04-08
2013-01-1270
Two on-line algorithms have been developed to acquire driveline component loads in terms of revolutions at torque and rainflow cycle counting matrix. These algorithms have been implemented in real-time on a standard engine controller unit and have been optimized for fast run-time and low memory requirements. The revolutions at torque algorithm is intended to count the number of driveshaft revolutions in each torque level for each gear and store the number of counts in the engine controller memory. The rainflow cycle counting algorithm is intended to count driveshaft torque cycles and to store the number of counts in a two dimensional “from-to” matrix format in the engine controller memory. The revolutions at torque histogram data and the rainflow cycle counting matrix are then downloaded from the vehicle using the data collection device. Download occurs when the vehicle is serviced at a dealership.
Journal Article

Combined Variation Modeling of Structural and Tuning Components for Vehicle Performance Assessment

2013-04-08
2013-01-0944
During the vehicle development process, dimensional variation simulation modeling has been applied extensively to estimate the effects of build variation on the final product. Traditional variation simulation methods analyze the tolerance inputs of structural components, but do not account for any compliance effects due to stiffness variation in tuning components, such as bushings, springs, isolators, etc., since both product and process variation are simulated based on rigid-body assumptions. Vehicle performance objectives such as ride and handling (R&H) often involve these compliance metrics. The objective of this paper is to present a method to concurrently simulate the tolerance from the structural parts as well as the variability of compliance from the tuning components through an integration package. The combination of these two highly influential effects will allow for a more accurate prediction and assessment of vehicle performance.
Journal Article

Development of Corrosion Testing Protocols for Magnesium Alloys and Magnesium-Intensive Subassemblies

2013-04-08
2013-01-0978
Corrosion tendency is one of the major inhibitors for increased use of magnesium alloys in automotive structural applications. Moreover, systematic or standardized methods for evaluation of both general and galvanic corrosion of magnesium alloys, either as individual components or eventually as entire subassemblies, remains elusive, and receives little attention from professional and standardization bodies. This work reports outcomes from an effort underway within the U.S. Automotive Materials Partnership - ‘USAMP’ (Chrysler, Ford and GM) directed toward enabling technologies and knowledge base for the design and fabrication of magnesium-intensive subassemblies intended for automotive “front end” applications. In particular, subassemblies consisting of three different grades of magnesium (die cast, sheet and extrusion) and receiving a typical corrosion protective coating were subjected to cyclic corrosion tests as employed by each OEM in the consortium.
Journal Article

Random Vibration Testing Development for Engine Mounted Products Considering Customer Usage

2013-04-08
2013-01-1007
In this paper, the development of random vibration testing schedules for durability design verification of engine mounted products is presented, based on the equivalent fatigue damage concept and the 95th-percentile customer engine usage data for 150,000 miles. Development of the 95th-percentile customer usage profile is first discussed. Following that, the field engine excitation and engine duty cycle definition is introduced. By using a simplified transfer function of a single degree-of-freedom (SDOF) system subjected to a base excitation, the response acceleration and stress PSDs are related to the input excitation in PSD, which is the equivalent fatigue damage concept. Also, the narrow-band fatigue damage spectrum (FDS) is calculated in terms of the input excitation PSD based on the Miner linear damage rule, the Rayleigh statistical distribution for stress amplitude, a material's S-N curve, and the Miles approximate solution.
Journal Article

Assessing the Propensity for Valve Train Tick Noise

2013-04-08
2013-01-1737
Valve ticking noises within a cam actuated valve train can arise mysteriously. One valve train may produce valve ticking noises, while a second, geometrically similar valve train may perform more quietly. To better understand this phenomena, we examine in detail the prototypical motion of a valve driven by a rocker arm with cylindrical rocker pad. General features of a valve's motion through its guide, induced by a rocker arm with a cylindrical pad, are derived. From these general features of valve motion, guide contact points during lift events can be inferred, and as a result, detailed forces and moments acting on the valve may be derived. From this derivation of forces acting on the valve, a metric for assessing the propensity of a valve train to tick as a result of the valve stem impacting its guide is proposed. The proposed metric indicates how the likelihood of valve tick noise can be reduced through judicious choices for valve train geometries, clearances and surface finishes.
Journal Article

Statistical Considerations for Evaluating Biofidelity, Repeatability, and Reproducibility of ATDs

2013-04-08
2013-01-1249
Reliable testing of a mechanical system requires the procedures used for the evaluation to be repeatable and reproducible. However, it is never possible to exactly repeat or reproduce the tests that are used for evaluation. To overcome this limitation, a statistical evaluation procedure can generally be used. However, most of the statistical procedures use scalar values as input without the ability to handle vectors or time-histories. To overcome these limitations, two numerical/statistical methods for determining if the impact time-history response of a mechanical system is repeatable or reproducible are evaluated and elaborated upon. Such a system could be a vehicle, a biological human surrogate, an Anthropometric Test Device (ATD or dummy), etc. The responses could be sets of time-histories of accelerations, forces, moments, etc., of a component or of the system. The example system evaluated is the BioRID II rear impact dummy.
Technical Paper

Application of Modeling Technology in a Turbocharged SI Engine

2013-04-08
2013-01-1621
Improvements to 1D engine modeling accuracy and computational speed have led to greater reliance on this simulation technology during the engine development process. The benefits of modeling show up in many ways: increased simulation iterations for better optimization, reduction in prototype hardware iterations, reduction in program timing and overall cost. In this study a 1D GT-Power model of a turbocharged engine system was used to assist in the initial design phase and throughout the program. The model was developed using Chrysler Group LLC proprietary modeling features for predictive combustion and knock event prediction. In all stages of this project the model's accuracy was improved through regular correlation with dynamometer data. This paper mainly focuses on engine compression ratio selection, turbocharger selection, and cycle-to-cycle variation/cylinder-to-cylinder variation reduction through the combination of 1D GT-Power model optimization and dynamometer tests.
Technical Paper

Calibrating an Adaptive Pivoting Vane Pump to Deliver a Stepped Pressure Profile

2013-04-08
2013-01-1729
This paper presents a process for the selection of spring rate and pre-load for an adaptively controlled pivoting vane oil pump. The pivoting vane pump has two modes: high and low speed. A spring within the pump is installed to induce a torque that causes an adaptive displacement mechanism within the pump to move toward maximum oil chamber size. In low speed mode, two feedback regions are pressurized that produce torques that counter the spring generated torque. Together, both regions being pressurized by main oil gallery pressure tend to reduce pump displacement more at lower speeds than if only a single chamber is pressurized. At higher speeds, a solenoid switch turns off pressure to one of the feedback pressure chambers, thereby reducing feedback torque that counters spring torque. This enables higher pressure calibrations in this speed mode. In this paper, we identify a process for choosing the spring rate and pre-load that calibrates the adaptive displacement mechanism.
Technical Paper

A New Method of d'Alembert's Principle Finite Element Based Fatigue Calculation with Input of Loads and Accelerations

2013-04-08
2013-01-1003
The common practice in finite element based fatigue calculation with multiple channels of road load is to perform a set of unit load static stress analysis and conduct stress time history construction later during fatigue calculation. The main advantage of this so-called quasi-static finite element based fatigue calculation is to avoid time-consuming dynamic stress analysis and also reduce static stress analysis from millions of real load cases to a few dozens unit-load cases. The main disadvantage of this quasi-static finite element based fatigue calculation is the absence of vibration-induced stresses in stress time history construction and fatigue analysis. A decade ago, a modal transient finite element based fatigue calculation was proposed to introduce vibration-induced stresses into finite element based fatigue calculation. The idea is to add vibration-induced modal stresses to load-induced instant stresses in stress time history construction and fatigue calculation.
Technical Paper

Gasoline Combustion Modeling of Direct and Port-Fuel Injected Engines using a Reduced Chemical Mechanism

2013-04-08
2013-01-1098
A set of reduced chemical mechanisms was developed for use in multi-dimensional engine simulations of premixed gasoline combustion. The detailed Primary Reference Fuel (PRF) mechanism (1034 species, 4236 reactions) from Lawrence Livermore National Laboratory (LLNL) was employed as the starting mechanism. The detailed mechanism, referred to here as LLNL-PRF, was reduced using a technique known as Parallel Direct Relation Graph with Error Propagation and Sensitivity Analysis. This technique allows for efficient mechanism reduction by parallelizing the ignition delay calculations used in the reduction process. The reduction was performed for a temperature range of 800 to 1500 K and equivalence ratios of 0.5 to 1.5. The pressure range of interest was 0.75 bar to 40 bar, as dictated by the wide range in spark timing cylinder pressures for the various cases. In order to keep the mechanisms relatively small, two reductions were performed.
Technical Paper

Multi-Dimensional Modeling and Validation of Combustion in a High-Efficiency Dual-Fuel Light-Duty Engine

2013-04-08
2013-01-1091
Using gasoline and diesel simultaneously in a dual-fuel combustion system has shown effective benefits in terms of both brake thermal efficiency and exhaust emissions. In this study, the dual-fuel approach is applied to a light-duty spark ignition (SI) gasoline direct injection (GDI) engine. Three combustion modes are proposed based on the engine load, diesel micro-pilot (DMP) combustion at high load, SI combustion at low load, and diesel assisted spark-ignition (DASI) combustion in the transition zone. Major focus is put on the DMP mode, where the diesel fuel acts as an enhancer for ignition and combustion of the mixture of gasoline, air, and recirculated exhaust gas. Computational fluid dynamics (CFD) is used to simulate the dual-fuel combustion with the final goal of supporting the comprehensive optimization of the main engine parameters.
Technical Paper

Multi-Objectives Optimization of Fastener Location in a Bolted Joint

2013-04-08
2013-01-0966
During component development of multiple fastener bolted joints, it was observed that one or two fasteners had a higher potential to slip when compared to other fasteners in the same joint. This condition indicated that uneven distribution of the service loads was occurring in the bolted joints. The need for an optimization tool was identified that would take into account various objectives and constraints based on real world design conditions. The objective of this paper is to present a method developed to determine optimized multiple fastener locations within a bolted joint for achieving evenly distributed loads across the fasteners during multiple load events. The method integrates finite element analysis (FEA) with optimization software using multi-objective optimization algorithms. Multiple constraints were also considered for the optimization analysis. In use, each bolted joint is subjected to multiple service load conditions (load cases).
Technical Paper

EGR Systems Evaluation in Turbocharged Engines

2013-04-08
2013-01-0936
EGR systems are widely applied in modern turbocharged diesel engines to reduce engine-out emissions and will, or are being used to mitigate engine knock in SI engines for improved SI engine efficiency and power. In this paper, different EGR systems are detailed and evaluated theoretically based on the thermodynamics of a turbocharged system featuring an EGR sub-system. Turbine expansion ratio is utilized as a metric to estimate engine efficiency, i.e., pumping losses during the gas exchange process. Approaches such as compressor and turbine bypassing are evaluated as well. Based on above analysis, a new approach is put forward to expand the turbocharger work zone, particularly in the high efficiency regions by correctly utilizing EGR systems at all engine speed range: low-pressure loop EGR system at lower engine speed range and high-pressure loop EGR system at high engine speed range.
X