Refine Your Search

Topic

Search Results

Technical Paper

Implementation of Long Assembly Drills for 777X Flap Carriers

2024-03-05
2024-01-1923
Large diameter, tightly toleranced fastener patterns are commonplace in aerospace structures. Satisfactory generation of these holes is often challenging and can be further complicated by difficult or obstructed access. Bespoke tooling and drill jigs are typically used in conjunction with power feed units leading to a manual, inflexible, and expensive manufacturing process. For 777X flap production, Boeing and Electroimpact collaborated to create a novel, automated solution to generate the fastener holes for the main carrier fitting attachment pattern. Existing robotic automation used for skin to substructure assembly was modified to utilize extended length (up to 635mm), bearing-supported drill bar sub-assemblies. These Long Assembly Drills (LADs) had to be easily attached and detached by one operator, interface with the existing spindle(s), supply cutting lubricant, extract swarf on demand, and include a means for automatically locating datum features.
Technical Paper

Interface Gap Measurement Using Low Coherence Interferometry

2024-03-05
2024-01-1920
Large-scale aerostructures are commonly constructed using multiple layers of stacked material which are fastened together using mechanical methods. Ensuring the interface gaps between these materials are kept within engineering tolerances is of utmost importance to the structural integrity of the aircraft over its service life. Manual, right angle feeler gauges are the traditional method for measurement of interface gaps, but this method is tedious and mechanic dependent. A portable hand tool utilizing low-coherence interferometry has been developed to address these issues. The tool uses a right-angle probe tip which is inserted into a previously drilled hole and driven through the depth of the material. A line scan of data is collected and analyzed for the presence of interface gaps. To measure the consistency of the gap around the circumference of the hole, the tool is rotated by the operator and additional scans are collected.
Technical Paper

Narrow Fixture Improves One-Up Panel Assembly

2022-03-08
2022-01-0015
The use of a narrow profile posts or Skinny Fixture increases build speed and flexibility while improving quality of aluminum aircraft panels fastened in one-up assembly cells. Aluminum aircraft panels are made up of an outer skin and a series of stringers. The components must be held in accurate relative positions while preliminary fasteners are installed. By using narrow fixture posts in conjunction with deep drop stringer side machine tools, the fastening machine can apply fasteners at tighter initial spacing. The spacing is gained by providing clearances that allows the centerline of the fastening system to work closer to the post than previously achieved with deep fixture posts and short stringer side tooling. At one time the standard process was to hold the parts in manual tack cells and after tacking the panels are moved to a separate automated fastening cell. One-up assembly fixtures improve the process by reducing manual processes while minimizing component handling.
Technical Paper

Case Study on the Challenges and Responses of a Large Turnkey Assembly Line for the C919 Wing

2020-03-10
2020-01-0010
Design and production of an assembly system for a major aircraft component is a complex undertaking, which demands a large-scale system view. Electroimpact has completed a turnkey assembly line for producing the wing, flap, and aileron structures for the COMAC C919 aircraft in Xi’an, China. The project scope includes assembly process design, material handling design, equipment design, manufacture, installation, and first article production support. Inputs to the assembly line are individual component parts and small subassemblies. The assembly line output is a structurally completed set of wing box, flaps, and ailerons, for delivery to the Final Assembly Line in Shanghai. There is a trend toward defining an assembly line procurement contract by production capacity, versus a list of components, which implies that an equipment supplier must become an owner of production processes.
Technical Paper

C919 Trailing Edge Assembly Interchangeable Tooling

2019-09-16
2019-01-1880
Traditional Trailing Edge (TE) assembly that utilise fixtures for accurate positioning of aircraft (a/c) parts do not allow for removal of specific tooling from the fixtures to travel with the TE, post assembly. Instead, the tooling that positions all the primary a/c assembly datums generally utilise precision pins of various sizes that index and clamp the a/c ribs. Often it is difficult to remove the pins post assembly before the spar can be taken out of the fixture. Use of hammers is common place to hit pins out of holes which is less than ideal considering the a/c parts can be fragile and the tooling is precision set. Also, the Main Assembly Fixture (MAJ) that will receive the TE will inevitably need to relocate some if not all the primary a/c ribs and therefore will most likely be subject to some amount of persuasion.
Journal Article

A Process for Delivering Extreme AFP Head Reliability

2019-03-19
2019-01-1349
Every now and then a good idea happens. The Modular head was a great idea and enabled the use of multiple types of AFP heads, ATL, ply cutting, part probing, etc. with the use of a single machine and machining cell. At the time the modular head was developed by Electroimpact circa 2004, the industry assumed (and accepted) that AFP was an unreliable process. It still isn’t as reliable as we’d like. One way of coping with this lack of reliability is to stage more than one head in the AFP cell so that a spare head of the exact same type is ready to jump into action if the head out on the floor has an issue. If the reliability of the AFP process were to increase 10x or 50x, would there still be a business case for the multiple AFP head system? The modular head may still win the day, but the metrics change. For instance, if there was only 20 minutes of down time for every head load, it may no longer be advantageous to have 2 heads of the exact same type in the cell.
Technical Paper

EMR with High Reliability for Retrofit of E4100 Riveting Gantry Machines

2017-09-19
2017-01-2099
Electroimpact has retrofitted two E4100 riveting gantry machines and two more are in process. These machines use the EMR (Electromagnetic Riveter) riveting process for the installation of slug rivets. We have improved the skin side EMR to provide fast and reliable results: reliability improved by eliminating a weekly shutdown of the machine. In paper 2015-01-2515 we showed the slug rivet injector using a Synchronized Parallel Gripper that provides good results over multiple rivet diameters. This injector is mounted to the skin side EMR so that the rivet injection can be done at any position of the shuttle table. The EMR is a challenging application for the fingers due to shock and vibration. In previous designs, fingers would occasionally be thrown out of the slots. To provide reliable results we redesigned the fingers retainer to capture the finger in a slotted plastic block which slides along the outside diameter of the driver bearing.
Technical Paper

Automatic Tool Change System for Stringer Side Rivet and Bolt Anvils on a D-Frame or C-Frame Fuselage Fastening Machine

2017-09-19
2017-01-2080
Manually changing stringer-side tooling on an automatic fastening machine is time consuming and can be susceptible to human error. Stringer-side tools can also be physically difficult to manage because of their weight, negatively impacting the experience and safety of the machine operator. A solution to these problems has recently been developed by Electroimpact for use with its new Fuselage Skin Splice Fastening Machine. The Automatic Tool Changer makes use of a mechanically passive gripper system capable of securely holding and maneuvering twelve tools weighing 40 pounds each inside of a space-saving enclosure. The Automatic Tool Changer is mounted directly to the stringer side fastening head, meaning the machine is capable of changing tools relatively quickly while maintaining its position on the aircraft panel with no machine operator involvement.
Technical Paper

Unique Material Handling and Automated Metrology Systems Provides Backbone of Accurate Final Assembly Line for Business Jet

2016-09-27
2016-01-2104
Figure 1 Global 7000 Business Jet. Photo credit: Robert Backus. The customer’s assembly philosophy demanded a fully integrated flexible pulse line for their Final Assembly Line (FAL) to assemble their new business jets. Major challenges included devising a new material handling system, developing capable positioners and achieving accurate joins while accommodating two different aircraft variants (requiring a “flexible” system). An additional requirement was that the system be easily relocated to allow for future growth and reorganization. Crane based material handling presents certain collision and handover risks, and also present a logistics challenge as cranes can become overworked. Automated guided vehicles can be used to move large parts such as wings, but the resulting sweep path becomes a major operational limitation. The customer did not like the trade-offs for either of these approaches.
Technical Paper

High Accuracy Assembly of Large Aircraft Components Using Coordinated Arm Robots

2016-09-27
2016-01-2133
Aircraft manufacturers are seeking automated systems capable of positioning large structural components with a positional accuracy of ±0.25mm. Previous attempts at using coordinated arm robots for such applications have suffered from the use of low accuracy robots and minimal systems integration. Electroimpact has designed a system that leverages our patented Accurate Robot technology to create an extensively automated and comprehensively integrated process driven by the native airplane component geometry. The predominantly auto-generated programs are executed on a single Siemens CNC that controls two Electroimpact-enhanced Kuka 6 axis robots. This paper documents the system design including the specification, applicable technologies, descriptions of system components, and the comprehensive system integration. The first use of this system will be the accurate assembly of production empennage panels for the Boeing 777X, 787 and 777 airplanes.
Journal Article

Automatic Temporary Fastener Installation System for Wingbox Assembly

2016-09-27
2016-01-2085
The automation cycle time of wing assembly can be shortened by the automated installation of single-sided temporary fasteners to provide temporary part clamping and doweling during panel drilling. Feeding these fasteners poses problems due to their complexity in design and overall heavy weight. In the past, Electroimpact has remotely fed these fasteners by blowing them through pneumatic tubing. This technique has resulted in occasional damage to fasteners during delivery and a complex feed system that requires frequent maintenance. Due to these issues, Electroimpact has developed a new fully automated single-sided temporary fastening system for installation of the LISI Clampberry fasteners in wing panels for the C919 wing factory in Yanliang, China. The feed system stores fasteners in gravity-fed cartridges on the end effector near the point of installation.
Journal Article

Panel Assembly Line (PAL) for High Production Rates

2015-09-15
2015-01-2492
Developing the most advanced wing panel assembly line for very high production rates required an innovative and integrated solution, relying on the latest technologies in the industry. Looking back at over five decades of commercial aircraft assembly, a clear and singular vision of a fully integrated solution was defined for the new panel production line. The execution was to be focused on co-developing the automation, tooling, material handling and facilities while limiting the number of parties involved. Using the latest technologies in all these areas also required a development plan, which included pre-qualification at all stages of the system development. Planning this large scale project included goals not only for the final solution but for the development and implementation stages as well. The results: Design/build philosophy reduced project time and the number of teams involved. This allowed for easier communication and extended development time well into the project.
Technical Paper

Robotic Drilling and Countersinking on Highly Curved Surfaces

2015-09-15
2015-01-2517
Electroimpact has developed a novel method for accurately drilling and countersinking holes on highly convex parts using an articulated arm robotic drilling system. Highly curved parts, such as the leading edge of an aircraft wing, present numerous challenges when attempting to drill normal to the part surface and produce tight tolerance countersinks. Electroipmact's Accurate Robot technology allows extremely accurate positioning of the tool point and the spindle vector orientation. However, due to the high local curvature of the part, even a small positional deviation of the tool point can result in a significantly different normal vector than expected from an NC program. An off-normal hole will result in an out of tolerance countersink and a non-flush fastener.
Technical Paper

Robotic Installation of OSI-Bolts

2015-09-15
2015-01-2512
Electroimpact has developed an automated solution for installing OSI-Bolts on the HStab for Boeing's 787-9 aircraft. This solution utilizes Electroimpact's existing accurate robotic system together with new hardware designed specifically for OSI-Bolts. In addition to automated drilling and fastener installation, this system performs numerous quality checks to insure the installed fastener meets engineering requirements. Before installing the fastener, the system measures actual stack thickness and the length of the fastener to ensure that the proper grip is installed. Torque and angle feedback are recorded during installation which can be used determine if the fastener was installed correctly. The system will also automatically shave the small protuberance on the fastener head left by the broken off fastener stem, which is inherent to the OSI-Bolt. Figure 1 Cell Overview
Technical Paper

Fully Automated Robotic Tool Change

2015-09-15
2015-01-2508
An improved aircraft assembly line incorporates fully automated robotic tool change. Ten machine tools, each with two onboard 6-axis robots, drill and fasten airplane structural components. The robots change 100% of the process tooling (drill bits, bolt anvils, hole probes, and nosepieces) to allow seamless transition across the entire range of hole and fastener sizes (3/16″-7/16″). To support required rate, total tool change time (including automatic calibration) is less than 80 seconds. This paper describes the robots and their end effector hardware, reliability testing, and simulations for both mechanical clearance and cycle time estimation.
Technical Paper

Use of Synchronized Parallel Grippers in Fastener Injection Systems

2015-09-15
2015-01-2515
A new style of rivet injector is in production use on a variety of fastening machines used by major aircraft manufacturers. In this injector the opposing sides of the rivet guide blocks are attached to the arms of a parallel gripper. We have implemented the parallel gripper in both vertical axis and horizontal axis riveting applications. It is equally effective in both orientations. We have implemented the parallel gripper rivet injector on headed rivets, threaded bolts, ribbed swage bolts and unheaded (slug) rivets.
Technical Paper

3D Countersink Measurement

2015-09-15
2015-01-2510
Accurate measurement of countersinks in curved parts has always been a challenge. The countersink reference is defined relative to the panel surface which includes some degree of curvature. This curvature thus makes accurate measurements very difficult using both contact and 2D non-contact measurements. By utilizing structured light 3D vision technologies, the ability to very accurately measure a countersink to small tolerances can be achieved. By knowing the pose of the camera and projector, triangulation can be used to calculate the distance to thousands of points on the panel and countersink surface. The plane of the panel is then calculated using Random Sample Consensus (RANSAC) method from the dataset of points which can be adjusted to account for panel curvatures. The countersink is then found using a similar RANSAC method.
Journal Article

System for Recirculation of Mobile Tooling

2015-09-15
2015-01-2494
Aircraft assembly systems which require tooling or machinery to pulse or move between multiple positions within a factory can be positioned with high repeatability without high performance foundations or sweeping out large areas of floorspace. An example shows a system of large left and right-hand frames which are positioned at 3 sequential manufacturing steps and then recirculated to the start of production via a central return aisle. The frames are 41 ton actual weight and are 72′ long, similar to a rail car. The system achieves rectangular motion for the recirculation path. The supporting and moving system incorporates low-cost rail in a floor with minimal preparation and simple to use controls. The system is also easily reconfigured if the manufacturing system needs to be altered to meet rate or flow requirements.
Journal Article

Utilization of a Vision System to Automate Mobile Machine Tools

2014-09-16
2014-01-2271
In an attempt to be more flexible and cost effective, Aerospace Manufacturers have increasingly chosen to adapt a manufacturing style which borrows heavily from the Automotive industry. To facilitate this change in methodologies a system for locating robots has been developed which utilizes cameras for both locating and guidance of a mobile platform for a robot with drilling and fastening end effector.
Technical Paper

Next Generation Mobile Robotic Drilling and Fastening Systems

2014-09-16
2014-01-2259
Electroimpact has developed a second generation of mobile robots with several improvements over the first generation. The frame has been revised from a welded steel tube to a welded steel plate structure, making the dynamic response of the structure stiffer and reducing load deflections while maintaining the same weight. The deflections of the frame have been optimized to simplify position compensation. The caster mechanism is very compact, offers greater mounting flexibility, and improved maneuverability. The mechanism uses a pneumatic airbag for both lifting and suspension. The robot sled has been improved to offer greater rigidity for the same weight, and dual secondary feedback scales on the vertical axis further improve the rigidity of the overall system. Maintenance access has been improved by rerouting the cable and hose trays, and lowering the electrical cabinet.
X