Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Application of DFSS Taguchi Method to Design Robust Shock Tower

2021-04-06
2021-01-0234
Design for Six Sigma (DFSS) is an essential tool and methodology for innovation projects to improve the product design/process and performance. This paper aims to present an application of the DFSS Taguchi Method for an automotive/vehicle component. High-Pressure Vacuum Assist Die Casting (HPVADC) technology is used to make Cast Aluminum Front Shock Tower. During the vehicle life, Shock Tower transfers the road high impact loads from the shock absorber to the body structure. Proving Ground (PG) and washout loads are often used to assess part strength, durability life and robustness. The initial design was not meeting the strength requirement for abusive washout loads. The project identified eight parameters (control factors) to study and to optimize the initial design. Simulation results confirmed that all eight selected control factors affect the part design and could be used to improve the Shock Tower's strength and performance.
Technical Paper

A Robust Cargo Box Structure Development Using DFSS Methodology

2020-04-14
2020-01-0601
A cargo box is a key structure in a pickup truck which is used to hold various items. Therefore, a cargo box must be durable and robust under different ballast conditions when subjected to road load inputs. This paper discusses a Design for Six Sigma (DFSS) approach to improve the durability of cargo box panel in its early development phase. Traditional methods and best practices resulted in multiple iterations without an obvious solution. Hence, DFSS tools were proposed to find a robust and optimum solution. Key control factors/design parameters were identified, and L18 Orthogonal Array was chosen to optimize design using CAE tools. The optimum design selected was the one with the minimum stress level and the least stress variation. This design was confirmed to have significant improvement and robustness compared to the initial design. DFSS identified load paths which helped teams finally come up with integrated shear plate to resolve the durability concern.
Technical Paper

Robust Optimization of Rear Suspension Trailing Arm for Durability Using Taguchi Method

2020-04-14
2020-01-0602
Vehicle suspension parts are subjected to variable road loads, manufacturing process variation and high installation loads in assembly process. These parts must be robust to usage conditions to function properly in the field. Design for Six Sigma (DFSS) tools and Taguchi Method were used to optimize initial rear suspension trailing arm design. Project identified key control factor/design parameters, to improve part robustness at the lowest cost. Optimized design performs well under higher road loads and meets stringent durability requirements. This paper evokes use of Taguchi Method to design robust rear suspension trailing arm and study effect of selected design parameters on robustness, stress level/durability and part cost.
X