Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Neural Network Modeling of Black Box Controls for Internal Combustion Engine Calibration

2024-07-02
2024-01-2995
The calibration of Engine Control Units (ECUs) for road vehicles is challenged by stringent legal and environmental regulations, coupled with short development cycles. The growing number of vehicle variants, although sharing similar engines and control algorithms, requires different calibrations. Additionally, modern engines feature increasingly number of adjustment variables, along with complex parallel and nested conditions within the software, demanding a significant amount of measurement data during development. The current state-of-the-art (White Box) model-based ECU calibration proves effective but involves considerable effort for model construction and validation. This is often hindered by limited function documentation, available measurements, and hardware representation capabilities. This article introduces a model-based calibration approach using Neural Networks (Black Box) for two distinct ECU functional structures with minimal software documentation.
Technical Paper

A Data-driven Approach for Enhanced On-Board Fault Diagnosis to Support Euro 7 Standard Implementation

2024-04-09
2024-01-2872
The European Commission is going to publish the new Euro7 standard shortly, with the target of reducing the impact on pollutant emissions due to transportation systems. Besides forcing internal combustion engines to operate cleaner in a wider range of operating conditions, the incoming regulation will point out the role of On-Board Monitoring (OBM) as a key enabler to ensure limited emissions over the whole vehicle lifetime, necessarily taking into account the natural aging of involved systems and possible electronic/mechanical faults and malfunctions. In this scenario, this work aims to study the potential of data-driven approaches in detecting emission-relevant engine faults, supporting standard On-Board Diagnostics (OBD) in pinpointing faulty components, which is part of the main challenges introduced by Euro7 OBM requirements.
Technical Paper

Optimum Shifting of Hybrid and Battery Electric Powertrain Systems with Motors before and after a Transmission

2024-04-09
2024-01-2143
This paper proposes an optimization-based transmission gear shifting strategy for electrified powertrains with a transmission. With the demand for reduced vehicle emissions, electrified propulsion systems have garnered significant attention due to their potential to improve vehicle efficiency and performance. An electrified propulsion system architecture of significance includes multiple electric motors and a transmission where some driveline actuators can transmit torque through changing gear ratios. If there is at least one electric motor arranged before the input of the transmission and at least one after the transmission output, a unique design opportunity arises to shift gears in the most energy efficient manner.
Technical Paper

Proactive Battery Energy Management Using Navigation Information

2024-04-09
2024-01-2142
In this paper, a control strategy for state of charge (SOC) allocation using navigation data for Hybrid Electric Vehicle (HEV) propulsion systems is proposed. This algorithm dynamically defines and adjusts a SOC target as a function of distance travelled on-line, thereby enabling proactive management of the energy store in the battery. The proposed approach incorporates variances in road resistance and adheres to geolocation constraints, including ultra-low emission zones (uLEZ). The anticipated advantages are particularly pronounced during scenarios involving extensive medium-to-long journeys characterized by abrupt topological changes or the necessity for exclusive electric vehicle (EV) mode operation. This novel solution stands to significantly enhance both drivability and fuel economy outcomes.
Technical Paper

A Linear Quadratic Integral Approach to the Profiling of Engine Speed for Synchronization

2024-04-09
2024-01-2139
During driving conditions, when it is needed to transition from Electric Vehicle (EV) to Hybrid Vehicle operation, synchronization of the engine with the shaft and transmission is essential to enable clutch engagement and, subsequently, providing engine power to the wheels. Challenges arise when the engine must generate power to move itself and cannot rely on electric motors for precision. Cost-effective hybrid vehicle propulsion architectures which utilize small 12V belt-starter generators (BSGs) to initiate engine activation are inherently affected. In these situations, a speed profile that balance rapid response and control effort while considering system limitations to mitigate undesirable overshoots and delays, is required. This paper presents a Linear Quadratic Integral (LQI) approach to formulate a speed reference profile that ensures optimal engine behavior.
Technical Paper

Real-time Multi-Layer Predictive Energy Management for a Plug-in Hybrid Vehicle based on Horizon and Navigation Data

2024-04-09
2024-01-2773
Plug-In Hybrid Vehicles (PHEV) have been of significant importance recently to comply with future CO2 and pollutant emissions limit. However, performance of these vehicles is closely related to the energy management strategy (EMS) used to ensure minimum fuel consumption and maximize electric driving range. While conventional EMS concepts are developed to operate in wide range of scenarios, this approach could potentially compromise the fuel consumption benefit due to the omission of route and traffic information. With the advancements in the availability of real-time traffic, navigation and driving route information, the EMS can be further optimized to extract the complete potential of a PHEV. In this context, this paper presents application of predictive energy management (PEM) functionalities combined with information such as live traffic data to reduce the fuel consumption for a P1/P3 configuration PHEV vehicle.
Technical Paper

Experimental and Numerical Investigation of a Single-Cylinder Methanol Port-Fuel Injected Spark Ignition Engine for Heavy-Duty Applications

2024-01-16
2024-26-0072
With the increasing focus on reducing CO2 emissions to combat global warming and climate change, the automotive industry is exploring near zero-emission alternative fuels to replace traditional fossil-based fuels like diesel, gasoline, and CNG. Methanol is a promising alternative fuel that is being evaluated in India due to its easy transportation and storage, as well as its production scalability and availability potential. This study focuses on the retro-fitment solution of M100 (pure methanol) SI port-fuel injection (PFI) mode of combustion. A heavy duty single-cylinder engine test setup was used to assess methanol SI combustion characteristic. Lean operation strategy has been investigated. At lean mixture conditions a significant drop in NOX and CO emissions was achieved. The fuel injection techniques and the impact of exhaust gas recirculation (EGR) on the conventional stoichiometric combustion process is highlighted.
Technical Paper

Fuel Cell Electric Metro Train Concept – Zero Emission Rail Transport Solution for Indian Cities

2024-01-16
2024-26-0179
Indian cities are among the most polluted in the world. The transportation sector is one of the major sources of gaseous pollutants. In recent years, also the effects of climate change and global warming have been felt across the globe. India has therefore committed at the CoP26 summit in 2021 to reduce its CO2 emissions by 45% till the year 2030. The Indian automotive sector is already addressing the problem with implementation of the Stage 2 BS VI norms, CAFÉ & Stage V standards and pursuing rapid electrification with application of zero emission vehicles. India also has the largest rail network of Asia, and a significant proportion of greenhouse gases is emitted by this sector. Deployment of zero emission fuel cell trains would be one of the solutions to meet India’s emission reduction targets.
Technical Paper

Modular Fuel Cell Control Software for Commercial Vehicle Applications

2024-01-16
2024-26-0169
Compliance with the future CO2 emission limits for the fleet of vehicles sold presents a major challenge for the automotive industry. To comply with these stringent limits, one solution is mobility using hydrogen as an energy carrier. In this context, the development of Proton Exchange Membrane (PEM) fuel cells for commercial vehicle applications, both on- and off-road, is of significant interest due to the non-existent CO2 emissions. However, performance of these devices is closely related to the control concepts that are used to ensure high efficiency, good transient performance, high reliability & durability as well as safe operation. To address these challenges, this paper presents a modular Fuel Cell Control Software which offers the potential to be used for different P&ID (Piping & Instrumentation Diagram) configurations of fuel cell systems.
Technical Paper

Ammonia as a Green and Zero Carbon Dioxide Internal Combustion Engine Fuel

2024-01-16
2024-26-0080
Most of the vehicles with internal combustion engines worldwide use fossil fuels. The widely used fuels available on the market are gasoline, diesel, and CNG. These fuels are getting costlier every year while at the same time generating pollutants through exhaust gases. Hence in the market, electric vehicles are effectively providing pollution-free solutions in the passenger car and lightweight carrier vehicle segments. However, the off-road, heavy-duty, and stationary applications with high load factors, are in general less favorable for battery electric scenarios since frequent charging will be mandatory and time-consuming. Hence, for these applications, the replacement of an internal combustion engine is quite difficult. There are various renewable fuels like ammonia, methanol, and biodiesel under research tests and study. As these are renewable fuels, the cost of these fuels can be lowered during mass production.
Technical Paper

Advance Thermal Management System for Electric Vehicle – An Indian Case Study

2024-01-16
2024-26-0126
Climate change and global warming are one of the major challenges faced by the world today. A significant number of Indian cities rank among the most polluted globally, with vehicular emissions being the primary contributor. To address this issue, the Government of India is actively advocating for the adoption of zero-emission vehicles such as electric vehicles through policies and initiatives like FAME II [1], PMP and the National Mission for Transformative Mobility and Storage. The acceptance of electric vehicles is growing in the Indian market seeing more than 200% increase in sales in the year 2022 compared to 2021 with a large share of 2-wheelers, 3-wheelers and compact cars getting electrified. Further adoption of electrification on a much larger scale currently faces the major challenge of high overall vehicle cost compared to conventional vehicles, with the major contribution coming from the HV battery which is the costliest system on the electric vehicles.
Technical Paper

Pre-ignition Behavior of Gasoline Blends in a Single- Cylinder Engine with Varying Boost Pressure and Compression Ratio

2023-09-29
2023-32-0120
Pre-ignition in a boosted spark-ignition engine can be triggered by several mechanisms, including oil-fuel droplets, deposits, overheated engine components and gas-phase autoignition of the fuel-air mixture. A high pre-ignition resistance of the fuel used mitigates the risk of engine damage, since pre-ignition can evolve into super-knock. This paper presents the pre-ignition propensities of 11 RON 89-100+ gasoline fuel blends in a single-cylinder research engine. Albeit the addition of two high-octane components (methanol and reformate) to a toluene primary reference fuel improved the pre-ignition resistance, one high-RON fuel experienced runaway pre-ignition at relatively low boost pressure levels. A comparison of RON 96 blends showed that the fuel composition can affect pre-ignition resistance at constant RON.
Technical Paper

Effect of Edge Finish on Fatigue Behavior of Thin Non-oriented Electrical Steel Sheets

2023-04-11
2023-01-0803
Strict environmental regulations are driving the automotive industry toward electric vehicles as they offer zero emissions. A key component in electric vehicles is the electric motor, where the stator and rotor are manufactured from stacks of thin electrical steel sheets. The electrical steel sheets can be cut in different ways, and the cutting methods may significantly affect the fatigue strength of the component. It is important to understand the effect of the cutting processes on the fatigue properties of electrical steel to ensure there is no premature failure of the electric motor resulting from an improper cutting process. This investigation compared the effect of three different edge preparation methods (stamping, CNC machining, and waterjet cutting) on the fatigue performance of 0.27mm thick electrical steel sheets. To investigate the effect of the edge finish on fatigue behavior, surface roughness was measured for these different samples.
Technical Paper

Architecture & Design of Common Hybrid Torque Controls within a Powertrain Domain Controller

2023-04-11
2023-01-0549
The proliferation and increased complexity of electrified powertrains presents a challenge to the associated controls development. This paper outlines the strategy of common supervisory and domain torque management for such powertrains. The strategy covers the multitude of powertrain architectures that exist in the market today while maintaining the fundamental pillars of physics-based torque controls, state-of-the-art optimization methodologies, and common-core hybrid system constraints. The electrified powertrain torque controls that Stellantis LLC. uses include key constituents such as optimization of powertrain state that relate to optimum engine speed and transmission gear, optimization of engine and motor torques, engine start-stop management, and hybrid shift execution which manages powertrain state transitions by interacting with various external transmission systems. The common backbone of these constituents are the dynamic/kinematic equations of the powertrain.
Technical Paper

“Build Your Hybrid” - A Novel Approach to Test Various Hybrid Powertrain Concepts

2023-04-11
2023-01-0546
Powertrain electrification is becoming increasingly common in the transportation sector to address the challenges of global warming and deteriorating air quality. This paper introduces a novel “Build Your Hybrid” approach to experience and test various hybrid powertrain concepts. This approach is applied to the light commercial vehicles (LCV) segment due to the attractive combination of a Diesel engine and a partly electrified powertrain. For this purpose, a demonstrator vehicle has been set up with a flexible P02 hybrid topology and a prototype Hybrid Control Unit (HCU). Based on user input, the HCU software modifies the control functions and simulation models to emulate different sub-topologies and levels of hybridization in the demonstrator vehicle. Three powertrain concepts are considered for LCVs: HV P2, 48V P2 and 48V P0 hybrid. Dedicated hybrid control strategies are developed to take full advantage of the synergies of the electrical system and reduce CO2 and NOx emissions.
Journal Article

Combustion Chamber Development to Maximize the Performance of the Hydrogen Combustion Engine for the T1 Ultimate Category of the Dakar Rally Competition

2023-04-11
2023-01-0737
As the world strives toward the common goal of carbon neutrality by 2050, motorsport cannot be allowed to stand alone as an exception. A gradual energy transition is clearly underway in the automotive industry but has already begun in motorsport as well. Among other initiatives, the Dakar Rally and the FIA have created the T1 ultimate category for prototypes powered by low-carbon fuels, including hydrogen. The Dakar is the pinnacle of off-road endurance rally competitions. It offers a great opportunity to ORECA Magny-Cours and FEV to expose their jointly developed internal combustion engine (ICE), fuelled with hydrogen only, to extreme conditions. In addition, the racing environment imposes a unique pace of development which can serve as a catalyst for spurring the H2-ICE technology. Moreover, a hydrogen powered engine is an interesting fit for motorsports because it combines high power output, a relatively long driving range and driving pleasure with an excellent carbon footprint.
Technical Paper

Fatigue Behavior of Stamped Electrical Steel Sheet at Room and Elevated Temperatures

2023-04-11
2023-01-0804
Electrical steels are silicon alloyed steels that possess great magnetic properties, making them the ideal material choice for the stator and rotor cores of electric motors. They are typically comprised of laminated stacks of thin electrical steel sheets. An electric motor can reach high temperatures under a heavy load, and it is important to understand the combined effect of temperature and load on the electrical steel’s performance to ensure the long life and safety of electric vehicles. This study investigated the fatigue strength and failure behavior of a 0.27mm thick electrical steel sheet, where the samples were prepared by a stamping process. Stress-control fatigue tests were performed at both room temperature and 150°C. The S-N curve indicated a decrease in the fatigue strength of the samples at the elevated temperature compared to the room temperature by 15-25 MPa in the LCF and HCF regimes, respectively.
Journal Article

Model-Based Thermal Control Strategy for Electrified Vehicles

2022-03-29
2022-01-0203
Stringent requirements for high fuel economy and energy efficiency mandate using increasingly complex vehicle thermal systems in most types of electrified vehicles (xEVs). Enabling the maximum benefits of such complex thermal systems under the full envelope of their operating modes demands designing complex thermal control systems. This is becoming one of the most challenging problems for electrified vehicles. Typically, the thermal systems of such vehicles have several modes of operation, constituting nonlinear multiple-input/multiple-output (MIMO) dynamic systems that cannot be efficiently controlled using classical or rule based strategies. This paper covers the different steps towards the design of a model-based control (MBC) strategy that can improve the overall performance of xEV thermal control systems. To achieve the above objective, the latter MBC strategy is applied to control cooling of the cabin and high voltage battery.
Technical Paper

Engine Friction Optimization Approach using Multibody Simulations

2021-09-22
2021-26-0409
From April 2020 BS 6 phase 1 legislation has come into place in India. Further in the coming years from 2022 CAFÉ norms will be implemented targeting 122 g/km CO2 fleet emissions. Also, from year 2023 onwards BS 6 phase 2 emission legislation with RDE cycle will be in place. With the expensive exhaust after-treatment system needed for meeting BS 6 norms, the Diesel powertrain based vehicles cost has increased further creating even further price difference to it’s Gasoline fuel variants. Additionally, the price difference between Diesel and Gasoline fuel is always reducing. These reasons have changed the buying pattern of passenger cars in India, with vehicle powered by engine<1.5 L displacements have gradually shifted predominantly to Gasoline powertrain. The impact of this will further stress the fleet CO2 emissions for manufacturers.
Technical Paper

Active Sound Design Methodologies for Hybrid and Electric Vehicles

2021-08-31
2021-01-1019
The automotive industry continues to develop new powertrain and vehicle technologies aimed at reducing overall vehicle-level fuel consumption. Specifically, the use of innovative drivetrain technologies including conventional and electrified propulsion systems is expected to play an increasingly important role in helping OEMs meet fleet CO2 reduction targets for 2025 and beyond. NVH development for vehicles with electrified powertrains introduces new challenges, which need to be understood and solved. The electrified vehicle space spans variants from micro and mild hybrids all the way through plug-in hybrids and fully electric vehicles. In addition to conventional NVH development methodologies, active sound design (ASD) can play a crucial role to enhance the interior sound perception of such vehicles and hence, improve customer acceptance of new technologies. This paper will begin with an introduction to the NVH challenges posed by electrified vehicles.
X