Refine Your Search

Topic

Author

Search Results

Technical Paper

Ultra Low Emission Norms Project Development by Virtualization - An Efficient Combination of Virtual and Conventional Test Benches

2021-09-22
2021-26-0495
The ever-increasing cost of automotive powertrain development is due to the more complex technologies required to meet the latest emissions legislation and customer expectations. Manufacturers need to conduct extensive development loops of test bench and on-road testing to verify the hardware, emission control system, corresponding ECU software function development. Increased resources are required to build up a comparably large number of prototype vehicles to calibrate all the ECU algorithms and functionalities. Increasing powertrain complexity leads typically to a strong increase of conventional calibration efforts. Therefore, there is a strongly increasing need for an advanced calibration approach based on multi-facial XiL simulation.
Journal Article

Ultra-Low NOx Emissions with a Close-Coupled Emission Control System on a Heavy-Duty Truck Application

2021-09-21
2021-01-1228
Heavy-duty vehicles represent a significant portion of road transport and they need to operate in a clean and efficient manner. Their emission control systems need to be enhanced to sustain the high conversion efficiencies seen during motorway conditions inother operating conditions. The European Commission is developing legislative proposals for Euro 7 emissions regulations for light- and heavy-duty vehicles. The new Euro 7regulation will likely focus on ensuring the emissions from heavy-duty vehicles are minimized over extensive on-road operating conditions and specifically on operating conditions such as urban driving and cold-start operation. These challenges are increased by the need to ensure low secondary emissions like NH3 and N2O, as well as a low impact on CO2 emissions. The paper outlines the low pollutant emissions achieved by a heavy-duty Diesel demonstrator vehicle.
Technical Paper

Super Ultra-Low NOX Emissions under Extended RDE Conditions - Evaluation of Light-Off Strategies of Advanced Diesel Exhaust Aftertreatment Systems

2019-04-02
2019-01-0742
Super ultra-low NOX emission engine concepts are essential to comply with future emission legislations. To meet the future emission standards, application of advanced diesel exhaust aftertreatment systems (EATS), such as Diesel Oxidation Catalyst (DOC), Lean NOX Trap (LNT), Selective Catalytic Reduction coatings on Soot Filters (SCRF) and underfloor SCR, is required. Effective customized thermal management strategies are essential to ensure fast light-off of the EATS after engine cold start, and to avoid significant cooldown during part load operation. The authors describes the investigation of different exhaust gas heating measures, such as intake throttling, late fuel injection, exhaust throttling, advanced exhaust cam phasing, retarded intake cam phasing, cylinder deactivation, full turbine bypass, electric catalyst heating and electrically heated intake manifold strategies.
Technical Paper

Accurate Mean Value Process Models for Model-Based Engine Control Concepts by Means of Hybrid Modeling

2019-04-02
2019-01-1178
Advanced powertrains for modern vehicles require the optimization of conventional combustion engines in combination with tailored electrification and vehicle connectivity strategies. The resulting systems and their control devices feature many degrees of freedom with a large number of available adjustment parameters. This obviously presents major challenges to the development of the corresponding powertrain control logics. Hence, the identification of an optimal system calibration is a non-trivial task. To address this situation, physics-based control approaches are evolving and successively replacing conventional map-based control strategies in order to handle more complex powertrain topologies. Physics-based control approaches enable a significant reduction in calibration effort, and also improve the control robustness.
Technical Paper

Dynamic Skip Fire Applied to a Diesel Engine for Improved Fuel Consumption and Emissions

2019-04-02
2019-01-0549
Dynamic skip fire (DSF) is an advanced cylinder deactivation technology where the decision to fire or skip a singular cylinder of a multi-cylinder engine is made immediately prior to each firing opportunity. A DSF-equipped engine features the ability to selectively deactivate cylinders on a cylinder event-by-event basis in order to match the requested torque demand at optimum fuel efficiency while maintaining acceptable noise, vibration and harshness (NVH). Dynamic Skip Fire (DSF) has already shown significant fuel economy improvements for throttled spark-ignition engines. This paper explores the potential benefits of DSF technology in improving fuel economy while maintaining ultra-low tailpipe emissions for light-duty (LD) Diesel powertrains.
Technical Paper

Optimized Exhaust After-Treatment System Solution for Indian Heavy Duty City Bus Application - The Challenges Involved and the Right Approach to Meet Future BS VI Emission Legislations and Real World Driving Emissions

2019-01-09
2019-26-0139
The vehicular pollution and emission levels are alarmingly increasing in India. The metro and urban cities are worst hit by the gaseous and particulate emissions produced by internal combustion engine powered vehicles. Following the trend from other developed countries, Government of India (GOI) has decided to migrate from existing BS IV legislation directly to BS VI legislation from April 2020 all across India. This migration in emission legislation took almost 10 years to be implemented in European Union (EU) countries. However, for India, the targeted implementation time is just 3 years, making it an uphill challenge for all the vehicle manufacturers. City bus is one such applications, which run mostly within the city and currently are powered by conventional Diesel engines. The vehicle manufacturers should focus on finding an optimized solution for meeting the future emission legislation in true sense.
Technical Paper

Optimized Electrification Solution for App-Based Taxis in Indian Cities

2019-01-09
2019-26-0129
The transportation needs in highly dense urban pockets is leading to high pollution islands in India. To address this issue, the emission legislations are becoming more stringent with an aim to reduce the emissions at national level. App based taxis are becoming lifeline for all major Indian cities. So far, these taxis are predominantly diesel powered compact cars. Thus, vehicle powertrain electrification is a good idea to improve local air quality in such urban pockets. While upgradation of internal combustion engines will add significant costs due to expensive exhaust after-treatment systems, electric motor driven taxis can be the ideal solution for emission reduction, as their operation is completely free of local pollutant emissions. However, the currently available electric vehicles are more expensive than the internal combustion engine powered counterparts.
Technical Paper

Bharat Stage-V Solutions for Agricultural Engines for India Market

2019-01-09
2019-26-0148
The Bharat Stage (CEV/Tractor) IV & V emission legislations will come into force in Oct 2020 & Apr 2024 respectively, posing a major engineering challenge in terms of system complexity, reliability, costs and development time. Solutions for the EU Stage-V NRMM legislation in Europe, from which the BS-V limits are derived, have been developed and are ready for implementation. To a certain extent these European solutions can be transferred to the Indian market. However, certain market-specific challenges are yet to be defined and addressed. In addition, a challenging timeline has to be considered for application of advanced technologies and processes during the product development. In this presentation, the emission roadmap will be introduced in the beginning, followed by a discussion of potential technology solutions on the engine itself as well as on the after treatment components.
Journal Article

Reduction of Parasitic Losses in Front-End Accessory Drive Systems: Part 2

2018-04-03
2018-01-0326
Demanding CO2 and fuel economy regulations are continuing to pressure the automotive industry into considering innovative powertrain and vehicle-level solutions. Powertrain engineers continue to minimize engine internal friction and transmission parasitic losses with the aim of reducing overall vehicle fuel consumption. In Part 1 of the study (2017-01-0893) described aspects of the test stand design that provides flexibility for adaptation to various test scenarios. The results from measurements for a number of front-end accessory drive (FEAD) components were shown in the context of scatterbands derived from multiple component tests. Key results from direct drive and belt-driven component tests were compared to illustrate the influence of the belt layout on mechanical efficiency of the FEAD system. The second part of the series will focus exclusively on the operation of the alternator. Two main elements of the study are discussed.
Technical Paper

In-Use Compliance Opportunity for Diesel Powertrains

2018-04-03
2018-01-0877
In-use compliance under LEV III emission standards, GHG, and fuel economy targets beyond 2025 poses a great opportunity for all ICE-based propulsion systems, especially for light-duty diesel powertrain and aftertreatment enhancement. Though diesel powertrains feature excellent fuel-efficiency, robust and complete emissions controls covering any possible operational profiles and duty cycles has always been a challenge. Significant dependency on aftertreatment calibration and configuration has become a norm. With the onset of hybridization and downsizing, small steps of improvement in system stability have shown a promising avenue for enhancing fuel economy while continuously improving emissions robustness. In this paper, a study of current key technologies and associated emissions robustness will be discussed followed by engine and aftertreatment performance target derivations for LEV III compliant powertrains.
Technical Paper

Meeting 2025 CAFE Standards for LDT with Fuel-Efficient Diesel Powertrains - Approaches and Solutions

2017-03-28
2017-01-0698
In view of changing climatic conditions all over the world, Green House Gas (GHG) saving related initiatives such as reducing the CO2 emissions from the mobility and transportation sectors have gained in importance. Therefore, with respect to the large U.S. market, the corresponding legal authorities have defined aggressive and challenging targets for the upcoming time frame. Due to several aspects and conditions, like hesitantly acting clients regarding electrically powered vehicles or low prices for fossil fuels, convincing and attractive products have to be developed to merge legal requirements with market constraints. This is especially valid for the market segment of Light-Duty vehicles, like SUV’S and Pick-Up trucks, which are in high demand.
Technical Paper

Bharat Stage VI Solutions for Commercial Engines for the India Market

2017-01-10
2017-26-0043
The Bharat Stage VI (BS-VI) emission legislation will come into force in 2020, posing a major engineering challenge in terms of system complexity, reliability, cost and development time. Solutions for the EURO VI on-road legislation in Europe, from which the BS-VI limits are derived, have been developed and have already been implemented. To a certain level these European solutions can be transferred to the Indian market. However, several market-specific challenges are yet to be defined and addressed. In addition, a very strict timeline has to be considered for application of advanced technologies and processes during the product development. In this paper, the emission roadmap will be introduced in the beginning, followed by a discussion of potential technology solutions on the engine itself as well as on the exhaust aftertreatment side. This includes boosting and fuel injection technologies as well as different exhaust gas recirculation methods.
Technical Paper

On-Board Diagnostic Related Challenges on Two-Wheelers Related to the Upcoming Bharat Stage VI Emission Standards

2017-01-10
2017-26-0147
The decision to leapfrog from the Bharat Stage (BS) IV emission standards directly to the BS VI standards not only effects passenger and commercial vehicles but also India’s by far largest vehicle class, with regards to sales and production, the two-wheelers. The BS VI norm will not only tighten the emission standards, but it will also increase the required emission mileage level and upgrade the On-Board Diagnostic (OBD) requirements, also by introducing In-Use Monitor Performance Ratio (IUMPR) standards. While OBD was already introduced for passenger and commercial vehicles with BS IV in 2010, OBD will be then newly introduced for two-wheelers. The OBD system monitors the vehicle’s in-use emission performance, informs the driver via the malfunction indication light (MIL) on the dashboard in case of an emission relevant failure, standardises the diagnostic code handling and regulates a standardised access to the electronic control units (ECUs) for maintenance and inspection purposes.
Technical Paper

Investigation of Insulated Exhaust Manifolds and Turbine Housings in Modern Diesel Engines for Emissions and Fuel Consumption Reduction

2016-04-05
2016-01-1003
Improvements in the efficiency of internal combustion engines has led to a reduction in exhaust gas temperatures. The simultaneous tightening of exhaust emission limits requires ever more complex emission control methods, including aftertreatment whose efficiency is crucially dependent upon the exhaust gas temperature. Double-walled (also called air-gap) exhaust manifold and turbine housing modules made from sheet metal have been used in gasoline engines since 2009. They offer the potential in modern Diesel engines to reduce both the emissions of pollutants and fuel consumption. They also offer advantages in terms of component weight and surface temperatures in comparison to cast iron components. A detailed analysis was conducted to investigate the potential advantages of insulated exhaust systems for modern diesel engines equipped with DOC and SCR coated DPF (SDPF).
Technical Paper

Optimization of Engine Efficiency and Diesel Aftertreatment System Architecture Using an Integrated System Simulation Approach

2016-02-01
2016-28-0227
As emission regulations are becoming increasingly stringent worldwide, multiple exhaust aftertreatment devices are considered in order to minimize diesel engine tailpipe emissions. For the typical diesel applications in developing markets like India, the fuel consumption is a very decisive selling argument for customers. The total cost of ownership needs to be as low as possible. To meet these competing requirements, the aftertreatment and engines must be optimized at the same time as the performance of the one system affects the other. In state-of-the-art calibration processes, the aftertreatment systems are considered separately from the calibration of the thermodynamics. This conventional approach makes it more challenging to achieve a simultaneous optimization of the fuel consumption and tailpipe emissions under transient operating conditions.
Technical Paper

Hybrid Dynamic Analysis of Crankshaft-Crankcase for Off-Road Engine Application

2015-09-22
2015-36-0120
This work presents the results and methodology of a dynamic durability analysis considering the interaction between crankcase and crankshaft. The approach is based on a robust mathematical model that couples the dynamic characteristics of the crankshaft and crankcase, representing the actual interaction between both components. Dynamic loadings generated by the crankshaft are transferred to the crankcase through flexible 3D hydrodynamic bearings. This methodology is referred to as hybrid simulation, which consists in the solution of the dynamics of an Elastic Multi-Body System (E-MBS) coupled with the Finite Element Methodology (FEM). For this study, it was considered an in-line 6-cylinder diesel engine used in off-road applications. The crankcase design must withstand higher loads due to new calibration targets stipulated for PROCONVE (MAR-I) emission regulations.
Technical Paper

Internal and External Measures for Catalyst Light-Off Support

2015-09-06
2015-24-2501
Within a project of the Research Association for Combustion Engines e.V., different measures for rising the temperature of exhaust gas aftertreatment components of both a passenger car and an industrial/commercial vehicle engine were investigated on a test bench as well as in simulation. With the passenger car diesel engine and different catalyst configurations, the potential of internal and external heating measures was evaluated. The configuration consisting of a NOx storage catalyst (NSC) and a diesel particulate filter (DPF) illustrates the potential of an electrically heated NSC. The exhaust aftertreatment system consisting of a diesel oxidation catalyst (DOC) and a DPF shows in simulation how variable valve timing in combination with electric heated DOC can be used to increase the exhaust gas temperature and thus fulfill the EU6 emission limits.
Journal Article

OBD Diagnostic Strategies for LEVIII Exhaust Gas Aftertreatment Concepts

2015-04-14
2015-01-1040
Upcoming motor vehicle emission regulations, such as California's LEVIII, continue to tighten emission limitations in diesel vehicles. These increasingly challenging emission requirements will be met by improving the combustion process (reducing engine-out emissions), as well as improving the exhaust gas aftertreatment efficiency. Furthermore, intricate On-Board Diagnostics (OBD) systems are required to properly diagnose and meet OBD regulation requirements for complex aftertreatment systems. Under these conditions, current monitoring strategies are unable to guarantee reliable detection of partially failed systems. Additionally, new OBD regulations require aftertreatment systems to be diagnosed as a whole. This paper covers potential OBD strategies for LEVIII aftertreatment concepts with regard to regulation compliance and robustness, while striving to use existing sensor concepts.
Technical Paper

Robust Emission Compliance and Reduction of System Cost by advanced emission-based Diesel engine air management

2015-01-14
2015-26-0089
The continuously strengthened requirements regarding air quality and pollutant reduction as well as GHG emissions further complicate the compliance with legal standards. Especially in view of cost-sensitive applications this demand strongly collides with the EMS set-up and the sensor requirements with still increasing overall system complexity. The paper in hand describes a novel air path control approach, which offers the potential for a flexible use of multiple EGR routes to meet upcoming legislations more robustly, while providing a significant reduction of calibration effort and sensor content at the same time. By using a direct emission based cylinder charge control, also alterations in operational ambient conditions are covered with system reactions according to physical-based rules to enhance the engine-out emission performance without need for tuning of corrections of any air path set point.
Journal Article

Development Trends for Commercial and Industrial Engines

2014-09-30
2014-01-2325
Exhaust emission reduction and improvements in energy consumption will continuously determine future developments of on-road and off-road engines. Fuel flexibility by substituting Diesel with Natural Gas is becoming increasingly important. To meet these future requirements engines will get more complex. Additional and more advanced accessory systems for waste heat recovery (WHR), gaseous fuel supply, exhaust after-treatment and controls will be added to the base engine. This additional complexity will increase package size, weight and cost of the complete powertrain. Another critical element in future engine development is the optimization of the base engine. Fundamental questions are how much the base engine can contribute to meet the future exhaust emission standards, including CO2 and how much of the incremental size, weight and cost of the additional accessories can be compensated by optimizing the base engine.
X