Refine Your Search

Topic

Author

Search Results

Technical Paper

A Technical Review on Existing Methodologies and Industry Practices for Powertrain Mounting System Development through Multi Body Dynamics

2023-10-31
2023-01-1669
The main purpose of the powertrain mounting system is to reduce excessive motion created by the powertrain system as well as to isolate vibration and noise from being transferred to the main system There are two fundamental requirements which needs to be fulfilled by mounting system, those are static requirement and dynamic requirement. Where the static requirements states that it should support the whole weight of the powertrain system under sever driving conditions and to avoid the metal-to-metal contact between oscillating parts of engine and structure. Dynamic requirement states that it should efficiently isolate the vibration and unbalanced forces, furthermore it should allow the sufficient movement of powertrain so as it will not damage the structure of the chassis. The mounting system also plays a significant role in vehicle ride and handling, as it controls the motion of largest mass of the vehicle i.e., powertrain.
Technical Paper

Investigations of Emission Reduction Potential of Diesel-Methanol Blends in a Heavy-Duty Genset Engine

2021-09-22
2021-26-0104
One of the most promising fuel alternatives for Diesel is Methanol. The fuel is regarded advantageous owing to the easy availability of raw materials for its production, its low cost and high Oxygen content that has potential to reduce emissions of smoke, CO and PM. Methanol as a fuel blend with Diesel is non-viable as they are not readily miscible with each other. This paper expounds the engine performance and emission evaluation of blending Methanol with Diesel by using two methods that aid in overcoming phase separation. The experiments were performed in two stages. In the first stage, investigation of phase stabilization of Methanol in Diesel with suitable additive concentration was performed. This was performed to determine the optimum additive and its concentration for a Methanol share of up to 25% in Diesel-Methanol blends for a stabilization period of 30 days.
Technical Paper

Case Study on Gasoline Electric Range Extender as a Powertrain Solution for Small Commercial Goods and Passenger Carrier Vehicles in India

2021-09-22
2021-26-0158
Climate change is a global phenomenon now and countries across the globe are working towards reducing emissions by bringing in stricter legislations on emissions and CO2. India is also facing huge challenges on pollutions in large cities. Reports suggest that 7 of the 10 most polluted cities of the world lie in India. The growing public opinion towards cleaner air and reduced greenhouse gaseous emissions has sensitized the matter and has led to drafting of strict emission legislations in India during the past few years. The leap frogging from BS 4 to BS 6 in 2020 by skipping BS 5 norms showed the intent of the GOI towards emission reduction. The BS 6 legislation is not limiting to meeting norms with legislative emission cycle but will also focus from year 2023 onto real driving emissions on actual roads. GOI is also proposing to implement fleet CO2 emission norms (CAFÉ) by 2022 to regulate the CO2 emissions.
Technical Paper

Ultra Low Emission Norms Project Development by Virtualization - An Efficient Combination of Virtual and Conventional Test Benches

2021-09-22
2021-26-0495
The ever-increasing cost of automotive powertrain development is due to the more complex technologies required to meet the latest emissions legislation and customer expectations. Manufacturers need to conduct extensive development loops of test bench and on-road testing to verify the hardware, emission control system, corresponding ECU software function development. Increased resources are required to build up a comparably large number of prototype vehicles to calibrate all the ECU algorithms and functionalities. Increasing powertrain complexity leads typically to a strong increase of conventional calibration efforts. Therefore, there is a strongly increasing need for an advanced calibration approach based on multi-facial XiL simulation.
Technical Paper

EGR Mixer Optimization for Achieving Uniform Cylinder EGR Distribution Using 1D-3D CFD Coupled Simulation Approach to Meet Future Stage V Emission Legislation in India

2020-09-25
2020-28-0390
Vehicles are one of the main sources of pollution in India, which produce substantial amount of pollutants. Gaseous pollutants are reason for major health problems; hence emission legislations are becoming increasingly stringent all over the world. India is also following the global trend of migrating in the Off-highway segment from Trem IIIA to Stage V legislation by 2024. This legislation change is calling for technological upgrade of all existing engines. EGR has been successfully proved as a useful technology to reduce NOx by decreasing the oxygen concentration and the peak temperature of the combustion. Due to compact design and space restriction, the distance required for the homogeneous mixing of fresh air and EGR is not enough. Therefore, the mixing of the EGR and distribution of the EGR over the cylinders may not be equal.
Technical Paper

Super Ultra-Low NOX Emissions under Extended RDE Conditions - Evaluation of Light-Off Strategies of Advanced Diesel Exhaust Aftertreatment Systems

2019-04-02
2019-01-0742
Super ultra-low NOX emission engine concepts are essential to comply with future emission legislations. To meet the future emission standards, application of advanced diesel exhaust aftertreatment systems (EATS), such as Diesel Oxidation Catalyst (DOC), Lean NOX Trap (LNT), Selective Catalytic Reduction coatings on Soot Filters (SCRF) and underfloor SCR, is required. Effective customized thermal management strategies are essential to ensure fast light-off of the EATS after engine cold start, and to avoid significant cooldown during part load operation. The authors describes the investigation of different exhaust gas heating measures, such as intake throttling, late fuel injection, exhaust throttling, advanced exhaust cam phasing, retarded intake cam phasing, cylinder deactivation, full turbine bypass, electric catalyst heating and electrically heated intake manifold strategies.
Technical Paper

NOx Model Calibration for BS VI Applications

2019-01-09
2019-26-0050
Challenging limits for NOx in BS VI emission legislation demand high performance conversion techniques. Exhaust after treatment systems such as Lean NOx Trap and selective catalytic reduction can provide effective reduction of Engine out NOx emissions. From the moment of engine start, these systems require reliable signal input of the NOx sensor. The efficient use of such DeNOx systems demands earliest possible activation of the upstream NOx sensor. However, attainment of the sensor dew point delays reliable measurements. Data collected from the emission test cycles, WLTC and NEDC indicates the unavailability of NOx sensor from the beginning of the test cycle. Hence, requirement of a NOx model is inevitable to estimate NOx emissions till sensor reaches its dew point. The scope of this paper is to elucidate the calibration process through which a robust estimation of the NOx emissions can be made in different engine modes along with varying ambient conditions.
Technical Paper

Bharat Stage-V Solutions for Agricultural Engines for India Market

2019-01-09
2019-26-0148
The Bharat Stage (CEV/Tractor) IV & V emission legislations will come into force in Oct 2020 & Apr 2024 respectively, posing a major engineering challenge in terms of system complexity, reliability, costs and development time. Solutions for the EU Stage-V NRMM legislation in Europe, from which the BS-V limits are derived, have been developed and are ready for implementation. To a certain extent these European solutions can be transferred to the Indian market. However, certain market-specific challenges are yet to be defined and addressed. In addition, a challenging timeline has to be considered for application of advanced technologies and processes during the product development. In this presentation, the emission roadmap will be introduced in the beginning, followed by a discussion of potential technology solutions on the engine itself as well as on the after treatment components.
Technical Paper

In-Use Compliance Opportunity for Diesel Powertrains

2018-04-03
2018-01-0877
In-use compliance under LEV III emission standards, GHG, and fuel economy targets beyond 2025 poses a great opportunity for all ICE-based propulsion systems, especially for light-duty diesel powertrain and aftertreatment enhancement. Though diesel powertrains feature excellent fuel-efficiency, robust and complete emissions controls covering any possible operational profiles and duty cycles has always been a challenge. Significant dependency on aftertreatment calibration and configuration has become a norm. With the onset of hybridization and downsizing, small steps of improvement in system stability have shown a promising avenue for enhancing fuel economy while continuously improving emissions robustness. In this paper, a study of current key technologies and associated emissions robustness will be discussed followed by engine and aftertreatment performance target derivations for LEV III compliant powertrains.
Journal Article

The Thermodynamics of Exhaust Gas Condensation

2017-06-29
2017-01-9281
Water vapor is, aside from carbon dioxide, the major fossil fuel combustion by-product. Depending on its concentration in the exhaust gas mixture as well as on the exhaust gas pressure, its condensation temperature can be derived. For typical gasoline engine stoichiometric operating conditions, the water vapor dew point lies at about 53 °C. The exhaust gas mixture does however contain some pollutants coming from the fuel, engine oil, and charge air, which can react with the water vapor and affect the condensation process. For instance, sulfur trioxide present in the exhaust, reacts with water vapor forming sulfuric acid. This acid builds a binary system with water vapor, which presents a dew point often above 100 °C. Exhaust composition after leaving the combustion chamber strongly depends on fuel type, engine concept and operation point. Furthermore, the exhaust undergoes several chemical after treatments.
Technical Paper

Tuning and Validation of DPF for India Market

2017-01-10
2017-26-0135
In a move to curb vehicular pollution, Indian Government decided to bring forward the date for BSVI standards into effect from April 2020 while skipping the intermediate BSV stage. The plan to implement BSVI norms, which initially was scheduled for 2024 according to the National Auto Fuel Policy dated April 27, 2015, has now been slotted for April 2020. For particulate mass (PM) emissions to be brought down to the BS VI level (4.5mg/km), diesel passenger cars need to be fitted with a diesel particulate filter (DPF). The diesel particulate filter (DPF) is a device designed to remove soot from the exhaust gas of the diesel engine. DPF must be cleaned/regenerated from time to time else, it will block up. Optimized DPF calibration is the key for various challenges linked with its use as one of the effective PM reduction technology.
Technical Paper

Bharat Stage VI Solutions for Commercial Engines for the India Market

2017-01-10
2017-26-0043
The Bharat Stage VI (BS-VI) emission legislation will come into force in 2020, posing a major engineering challenge in terms of system complexity, reliability, cost and development time. Solutions for the EURO VI on-road legislation in Europe, from which the BS-VI limits are derived, have been developed and have already been implemented. To a certain level these European solutions can be transferred to the Indian market. However, several market-specific challenges are yet to be defined and addressed. In addition, a very strict timeline has to be considered for application of advanced technologies and processes during the product development. In this paper, the emission roadmap will be introduced in the beginning, followed by a discussion of potential technology solutions on the engine itself as well as on the exhaust aftertreatment side. This includes boosting and fuel injection technologies as well as different exhaust gas recirculation methods.
Technical Paper

Investigation of Insulated Exhaust Manifolds and Turbine Housings in Modern Diesel Engines for Emissions and Fuel Consumption Reduction

2016-04-05
2016-01-1003
Improvements in the efficiency of internal combustion engines has led to a reduction in exhaust gas temperatures. The simultaneous tightening of exhaust emission limits requires ever more complex emission control methods, including aftertreatment whose efficiency is crucially dependent upon the exhaust gas temperature. Double-walled (also called air-gap) exhaust manifold and turbine housing modules made from sheet metal have been used in gasoline engines since 2009. They offer the potential in modern Diesel engines to reduce both the emissions of pollutants and fuel consumption. They also offer advantages in terms of component weight and surface temperatures in comparison to cast iron components. A detailed analysis was conducted to investigate the potential advantages of insulated exhaust systems for modern diesel engines equipped with DOC and SCR coated DPF (SDPF).
Technical Paper

Resource Management Processes for Future Vehicle Electronics

2016-04-05
2016-01-0039
New technologies such as multi-core and Ethernet provide vastly improved computing and communications capabilities. This sets the foundation for the implementation of new digital megatrends in almost all areas: driver assistance, vehicle dynamics, electrification, safety, connectivity, autonomous driving. The new challenge: We must share these computing and communication capacities among all vehicle functions and their software. For this step, we need a good resource planning to minimize the probability of late resource bottlenecks (e.g. overload, lack of real-time capability, quality loss). In this article, we summarize the status quo in the field of resource management and provide an outlook on the challenges ahead.
Technical Paper

Internal and External Measures for Catalyst Light-Off Support

2015-09-06
2015-24-2501
Within a project of the Research Association for Combustion Engines e.V., different measures for rising the temperature of exhaust gas aftertreatment components of both a passenger car and an industrial/commercial vehicle engine were investigated on a test bench as well as in simulation. With the passenger car diesel engine and different catalyst configurations, the potential of internal and external heating measures was evaluated. The configuration consisting of a NOx storage catalyst (NSC) and a diesel particulate filter (DPF) illustrates the potential of an electrically heated NSC. The exhaust aftertreatment system consisting of a diesel oxidation catalyst (DOC) and a DPF shows in simulation how variable valve timing in combination with electric heated DOC can be used to increase the exhaust gas temperature and thus fulfill the EU6 emission limits.
Technical Paper

Robust Emission Compliance and Reduction of System Cost by advanced emission-based Diesel engine air management

2015-01-14
2015-26-0089
The continuously strengthened requirements regarding air quality and pollutant reduction as well as GHG emissions further complicate the compliance with legal standards. Especially in view of cost-sensitive applications this demand strongly collides with the EMS set-up and the sensor requirements with still increasing overall system complexity. The paper in hand describes a novel air path control approach, which offers the potential for a flexible use of multiple EGR routes to meet upcoming legislations more robustly, while providing a significant reduction of calibration effort and sensor content at the same time. By using a direct emission based cylinder charge control, also alterations in operational ambient conditions are covered with system reactions according to physical-based rules to enhance the engine-out emission performance without need for tuning of corrections of any air path set point.
Journal Article

Development and Demonstration of LNT+SCR System for Passenger Car Diesel Applications

2014-04-01
2014-01-1537
The regulations for mobile applications will become stricter in Euro 6 and further emission levels and require the use of active aftertreatment methods for NOX and particulate matter. SCR and LNT have been both used commercially for mobile NOX removal. An alternative system is based on the combination of these two technologies. Developments of catalysts and whole systems as well as final vehicle demonstrations are discussed in this study. The small and full-size catalyst development experiments resulted in PtRh/LNT with optimized noble metal loadings and Cu-SCR catalyst having a high durability and ammonia adsorption capacity. For this study, an aftertreatment system consisting of LNT plus exhaust bypass, passive SCR and engine independent reductant supply by on-board exhaust fuel reforming was developed and investigated. The concept definition considers NOX conversion, CO2 drawback and system complexity.
Technical Paper

Potential of Advanced, Combined Aftertreatment Systems for Light-Duty Diesel Engines to Meet Upcoming EU and US Emission Regulation

2013-09-08
2013-24-0163
The modern DI-diesel engine represents a valuable platform to achieve worldwide tightened CO2 standards while meeting future strengthened emission regulations in the EU and the US. Due to the simultaneous, partially contrary legal demands, new integrated and combined systems are required to allow best overall performance within the upcoming legal frames concerning pollutant emission reduction and minimization of CO2 output. As extended emission relevant areas in the engine map have to be respected in view of RDE and PEMS scenarios in EU, but also facing the LEVIII standards in the US, comprehensive and synchronized technical solutions have to be engineered. Based on furthermore optimized combustion systems with improved combustion efficiency, meaning also lowered exhaust gas temperatures, especially refined and tailored emission control systems are demanded.
Technical Paper

Comparison of Model Predictions with Temperature Data Sensed On-Board from the Li-ion Polymer Cells of an Electric Vehicle

2012-05-15
2011-01-2443
One of the challenges faced when using Li-ion batteries in electric vehicles is to keep the cell temperatures below a given threshold. Mathematical modeling would indeed be an efficient tool to test virtually this requirement and accelerate the battery product lifecycle. Moreover, temperature predicting models could potentially be used on-board to decrease the limitations associated with sensor based temperature feedbacks. Accordingly, we present a complete modeling procedure which was used to calculate the cell temperatures during a given electric vehicle trip. The procedure includes a simple vehicle dynamics model, an equivalent circuit battery model, and a 3D finite element thermal model. Model parameters were identified from measurements taken during constant current and pulse current discharge tests. The cell temperatures corresponding to an actual electric vehicle trip were calculated and compared with measured values.
Technical Paper

Parametric Analysis of Piston Bowl Geometry and Injection Nozzle Configuration using 3D CFD and DoE

2012-04-16
2012-01-0700
In meeting the stringent emission norms with internal engine measures, the design of the piston bowl and the nozzle configuration perform a defining role. Through 3D CFD simulations, this article shall parametrically investigate the influence of piston bowl geometry and nozzle characteristics on the performance of the combustion system. After validation of the 3D simulation model with experimental results, a Design of Experiment (DoE) method shall be applied to analyze a matrix of piston bowls with parametric variations in geometry. Further, the influence of the nozzle cone angle, hydraulic flow rate, number of holes and their combination shall be determined using systematic parameter variations with selected piston bowl designs. The performance of the various hardware configurations would be evaluated based on the exhaust emissions and fuel consumption values.
X