Refine Your Search

Topic

Author

Search Results

Technical Paper

Simulation applied to compaction process in sintered components for product performance optimization

2024-01-08
2023-36-0011
Sintered parts mechanical properties are very sensitive to final density, which inevitable cause an enormous density gradient in the green part coming from the compaction process strategy. The current experimental method to assess green density occurs mainly in set up by cutting the green parts in pieces and measuring its average density in a balance using Archimedes principle. Simulation is the more accurate method to verify gradient density and the main benefit would be the correlation with the critical region in terms of stresses obtained by FEA and try to pursue the optimization process. This paper shows a case study of a part that had your fatigue limit improved 1000% using compaction process simulation for better optimization.
Technical Paper

Improving Cruise Control Efficiency through Speed Flexibility & On-Board Data

2023-10-31
2023-01-1606
In recent decades, significant technological advances have made cruise control systems safer, more automated, and available in more driving scenarios. However, comparatively little progress has been made in optimizing vehicle efficiency while in cruise control. In this paper, two distinct strategies are proposed to deliver efficiency benefits in cruise control by leveraging flexibility around the driver’s requested set speed, and road information that is available on-board in many new vehicles. In today’s cruise control systems, substantial energy is wasted by rigidly controlling to a single set speed regardless of the terrain or road conditions. Introducing even a small allowable “error band” around the set speed can allow the propulsion system to operate in a pseudo-steady state manner across most terrain. As long as the vehicle can remain in the allowed speed window, it can maintain a roughly constant load, traveling slower up hills and faster down hills.
Technical Paper

Better performance in fine-grain steel for transmission

2023-02-10
2022-36-0033
Manual transmissions for passenger cars are facing pressures due to rapid growth of automatic transmissions, which already represents more than 60% of Brazil market, and from higher torque demand due to strict emission legislation, which turbo engines had presented great contribution to it. To solve this contradictory issue, gears with higher strength and lower cost have been studied to replacement Nickel by Niobium in the steels. Furthermore, this technology could be applied to solve the issues with electrified vehicle, where high torque, speed and lifetime are demanded pursued for gears. This study aimed to build prototypes and compare the S-N curves, fracture analysis, microstructure for three kinds of steels (QS4321 with Ni, QS1916 FG without Ni & with Nb and QS 1916 without Ni and Nb) in the condition carburized, hardened and tempered with and without shot peening.
Technical Paper

Robustness of RTV (Room Temperature Vulcanized Rubber) Joint Design in Electric Vehicles

2022-10-05
2022-28-0082
As the automobile industry is moving towards Electrical vehicles, it becomes very important to have low cost and robust solution to seal all the internal Battery sub systems. It’s a known fact that various IC engine Vehicles are already using Room temperature vulcanized rubber (RTV) for many metal and composite sealing interfaces. Nevertheless, it always needs a good structural design to have good sealing performance. For designing a robust RTV joint for composite structures, it becomes important to have standard RTV chamfers. Sometimes even with these standards, it becomes very costly in having warranty issues when we have weak structure around RTV chamfers. Any joint structure involves multiple design parameters which might impact the sealing performance. Some of the joint structural parameters should be well designed at the early phase of product development cycle, which otherwise will later add lot of cost in modifying the product with its integrated components.
Journal Article

Braking Systems for High Performance Electric Vehicles - A Design Study

2020-10-05
2020-01-1612
Any young person who has taken delight in playing with toy slot cars knows that the world of racing and the world of electric cars has been intertwined for a long time. And anyone who has driven a modern performance electric vehicle knows that the instant acceleration, exhilarating speeds, and joy of driving of slot cars is reflected in these full sized “toys”, with the many more practical benefits that come from being full-sized and steerable. There is strong foreshadowing of a vibrant future for performance cars in some of the EV’s on the market now and in the near future, some offering “ludicrous” acceleration, and others storied nameplates with performance to match. The ease at which powerful electric drives can capably hurtle a massive vehicle around the track at high speeds, combined with the potential for the same electric drives to exert powerful regenerative braking, creates a very interesting situation for brake engineers.
Technical Paper

Vibro-Acoustic Analysis for Modeling Propeller Shaft Liner Material

2019-06-05
2019-01-1560
In recent truck applications, single-piece large-diameter propshafts, in lieu of two-piece propshafts, have become more prevalent to reduce cost and mass. These large-diameter props, however, amplify driveline radiated noise. The challenge presented is to optimize prop shaft modal tuning to achieve acceptable radiated noise levels. Historically, CAE methods and capabilities have not been able to accurately predict propshaft airborne noise making it impossible to cascade subsystem noise requirements needed to achieve desired vehicle level performance. As a result, late and costly changes can be needed to make a given vehicle commercially acceptable for N&V performance prior to launch. This paper will cover the development of a two-step CAE method to predict modal characteristics and airborne noise sensitivities of large-diameter single piece aluminum propshafts fitted with different liner treatments.
Technical Paper

Experimental Study of Acoustic and Thermal Performance of Sound Absorbers with Microperforated Aluminum Foil

2019-06-05
2019-01-1580
Aluminum foil applied to the surface of sound absorbing materials has broad application in the automotive industry. A foil layer offers thermal insulation for components close to exhaust pipes, turbo chargers, and other heat sources in the engine compartment and underbody. It can also add physical protection for acoustic parts in water-splash or stone-impingement areas of the vehicle exterior. It is known that adding impermeable plain foil will impact the sound absorption negatively, so Microperforated Aluminum Foil (MPAF) is widely used to counteract this effect. Acoustic characteristics of MPAF can be modeled analytically, but deviation of perforation size and shape, variation of hole density, material compression, and adhesive applied to the back of the foil for the molding process can impact the acoustic and thermal insulation performance.
Technical Paper

Tonal Annoyance Metric Development for Automotive Electric Vehicles

2019-06-05
2019-01-1467
Historical metrics intended to drive the development of vehicle powertrains have focused on sounds that are characteristic of IC engines. The interior noise contribution of the propulsion system in electric vehicles has significantly more tonal noise (and much less impulsive and broadband noise) than their IC engine counterparts. This tonal noise is not adequately represented by current propulsion systems metrics. While metrics exist today that were developed to represent the presence of tones in sounds most have focused on the level aspect of the tones relative to the surrounding noise or masking level, some examples include tonality, tone-to-noise ratio, and prominence ratio. A secondary, but also important aspect of tones is the annoyance as a function of frequency. This paper will highlight the development of a tonal annoyance weighting curve that can be used to account for the frequency aspect of tonal annoyance relative to electric vehicles.
Technical Paper

Development of Evaluation Methods for Steering Loss of Assist

2019-04-02
2019-01-1236
Loss of power steering assist (LoA) is viewed as a potential hazard in certain vehicle operational scenarios. Despite the importance of this steering failure mode, few published test protocols for the objective or subjective evaluation of vehicle performance in a loss of assist situation exist. The first part of this paper examines five of the key steering failure modes that can result in LoA and discusses why LoA persists as a key industry challenge. The second part analyzes the situational dynamics affecting vehicle controllability during a LoA event and proposes a subjective evaluation driving course that facilitates evaluations in various LoA scenarios. A corresponding objective test procedure and metric is also proposed. These evaluation methods support consistent performance evaluation of physical vehicles while also enabling the prediction of vehicle characteristics early in the vehicle development process (VDP).
Technical Paper

Multi-Material Topology Optimization for Crashworthiness Using Hybrid Cellular Automata

2019-04-02
2019-01-0826
Structures with multiple materials have now become one of the perceived necessities for automotive industry to address vehicle design requirements such as light-weight, safety, and cost. The objective of this study is to develop a design methodology for multi-material structures accountable for vehicle crash durability. The heuristic topology synthesis approach of Hybrid Cellular Automaton (HCA) framework is implemented to generate multi-material structures with the constraint on the volume fraction of the final design. The HCA framework is integrated with ordered-SIMP (solid isotropic material with penalization) interpolation, artificial material library, as well as statistical analysis of material distribution data to ensure a smooth transition between multiple practical materials during the topology synthesis.
Technical Paper

Fatigue Tests of Un-Notched and Notched Specimens and Life Prediction Using a Variable Critical Distance Method

2019-04-02
2019-01-0801
Fatigue is one of the most common failure mechanism in engineering structures. The statistical nature of fatigue life and the stress gradient are the two challenges among many while designing any component or structure for fatigue. Fatigue lives of the identical components exhibit the considerable variation under the same loading and operating conditions due to the difference in the material micro-structures and other uncontrolled parameters. Stress concentration at the notch causes stress gradient and therefore, applying the plane specimen results for actual engineering components with notches does not give quantitatively reliable results if the stress gradient effects are not considered. The objective of the work presented here was to carry out the fatigue tests of un-notched, U and V-notch specimens which were die cast using aluminum alloy (A380) and to obtain fatigue life using a variable critical distance method which considers the stress gradient due to the notch geometry.
Technical Paper

Multi-Material Topology Optimization: A Practical Method for Efficient Material Selection and Design

2019-04-02
2019-01-0809
As conventional vehicle design is adjusted to suit the needs of all-electric, hybrid, and fuel-cell powered vehicles, designers are seeking new methods to improve system-level design and enhance structural efficiency; here, multi-material optimization is suggested as the leading method for developing these novel architectures. Currently, diverse materials such as composites, high strength steels, aluminum and magnesium are all considered candidates for advanced chassis and body structures. By utilizing various combinations and material arrangements, the application of multi-material design has helped designers achieve lightweighting targets while maintaining structural performance requirements. Unlike manual approaches, the multi-material topology optimization (MMTO) methodology and computational tool described in this paper demonstrates a practical approach to obtaining the optimum material selection and distribution of materials within a complex automotive structure.
Technical Paper

A Qualitative and Quantitative Aerodynamic Study of a Rotating Wheel inside a Simplified Vehicle Body and Wheel Liner Cavity

2019-04-02
2019-01-0658
As automotive OEMs (Original Equipment Manufacturer) struggle to reach a balance between Design and Performance, environmental legislations continues to demand more rapid gains in vehicle efficiency. As a result, more attention is being given to the contributions of both tire and wheels. Not only tire rolling resistance, but also tire and wheel aerodynamics are being shown to be contributors to overall efficiency. To date, many studies have been done to correlate CFD simulations of rotating wheels both in open and closed wheeled environments to windtunnel results. Whereas this ensures proper predictive capabilities, little focus has been given to thoroughly explaining the physics that govern this complex environment. This study seeks to exhaustively investigate the complex interactions between the ground, body, and a rotating tire/wheel.
Technical Paper

Multi-Material Topology Optimization and Multi-Material Selection in Design

2019-04-02
2019-01-0843
As automakers continue to develop new lightweight vehicles, the application of multi-material parts, assemblies and systems is needed to enhance overall performance and safety of new and emerging architectures. To achieve these goals conventional material selection and design strategies may be employed, such as standard material performance indices or full-combinatorial substitution studies. While these detailed processes exist, they often succeed at only suggesting one material per component, and cannot consider a clean-slate design; here, multi-material topology optimization (MMTO) is suggested as an effective computational tool for performing large-scale combined multi-material selection and design. Unlike previous manual methods, MMTO provides an efficient method for simultaneously determining material existence and distribution within a predefined design domain from a library of material options.
Technical Paper

Alternate Solution for EV Charge Point Infrastructure in Crowded Urban Areas along the Shore

2019-01-09
2019-26-0121
Many countries including India have aggressively aimed to implement electric vehicles (EVs) usage from 2030 onwards. Companies such as General Motors, Uber, Waymo and Nissan etc. are exploring the realm of autonomous vehicles (AV) for use as taxis as early as 2019. Above facts logically arrive at the solution of Autonomous EVs as taxis. With the commitment towards enabling an all-electric future, there exists a need to provide suitable infrastructure for recharging. Major urban cities located by the shoreline such as New York, Hong Kong, Mumbai, Los Angeles etc. have been facing the space crunch, with real estate prices sky-rocketing exponentially. With this premise, the operating company would need a large amount of space to store their EVs for charging which attributes to a longer downtime. This brings a need for an economical charging location that has a reduced usage of urban infrastructure and energy consumption.
Technical Paper

Parametric Optimization of Planetary Carrier for Durability

2019-01-09
2019-26-0049
Planetary gear set is one of the most commonly used gear systems in automotive industry as they cater to high power density requirements. A simple planetary gear set consists of a sun gear, ring gear, planets and carrier which houses planet gears. Efficiency of a transmission is dependent upon performance of gear sets involved in power transfer to a great extent. Structural rigidity of a planetary carrier is critical in a planetary gear set as its deflection may alter the load distribution of gears in mesh causing durability and noise issues. Limited studies exist based on geometrical parameters of a carrier which would help a designer in selecting the dimensions at an early stage. In this study, an end to end automated FEA process based on DOE and optimization in Isight is developed. The method incorporates a workflow allowing for an update of carrier geometry, FE model setup, analysis job submission and post-processing of results.
Technical Paper

A Robust Preignition Rating Methodology: Evaluating the Propensity to Establish Propagating Flames under Real Engine Conditions

2017-10-08
2017-01-2241
In this work, an experimental and analysis methodology was developed to evaluate the preignition propensity of fuels and engine operating conditions in an SI engine. A heated glow plug was introduced into the combustion chamber to induce early propagating flames. As the temperature of the glowplug varied, both the fraction of cycles experiencing these early flames and the phasing of this combustion in the engine cycle varied. A statistical methodology for assigning a single-value to this complex behavior was developed and found to have very good repeatability. The effects of engine operating conditions and fuels were evaluated using this methodology. While this study is not directly studying the so-called stochastic preignition or low-speed preignition problem, it studies one aspect of that problem in a very controlled manner.
Technical Paper

Noise and Vibration Measurement Methods for Large Diameter Single-Piece Aluminum Propeller Shafts

2017-06-05
2017-01-1775
This paper describes recently developed test methods and instrumentation to address the specific noise and vibration measurement challenges posed by large-diameter single-piece tubular aluminum propeller (prop) shafts with high modal density. The prop shaft application described in this paper is a light duty truck, although the methods described are applicable to any rotating shaft with similar dynamic properties. To provide a practical example of the newly developed methods and instrumentation, impact FRF data were acquired in-situ for two typical prop shafts of significantly different diameter, in both rotating and stationary conditions. The example data exhibit features that are uniquely characteristic of large diameter single-piece tubular shafts with high modal density, including the particular effect of shaft rotation on the measurements.
Journal Article

Integration of Component Design Data for Automotive Turbocharger with Vehicle Fault Model Using JA6268 Methodology

2017-03-28
2017-01-1623
Suppliers and integrators are working with SAE’s HM-1 standards team to develop a mechanism to allow “Health Ready Components” to be integrated into larger systems to enable broader IVHM functionality (reference SAE JA6268). This paper will discuss how the design data provided by the supplier of a component/subsystem can be integrated into a vehicle reference model with emphasis on how each aspect of the model is transmitted to minimize ambiguity. The intent is to enhance support for the analytics, diagnostics and prognostics for the embedded component. In addition, we describe functionality being delegated to other system components and that provided by the supplier via syndicated web services. As a specific example, the paper will describe the JA6268 data submittal for a typical automotive turbocharger and other engine air system components to clarify the data modeling and integration processes.
Technical Paper

Enhancing Mechanical Properties of Ductile Cast Iron Conrods through Different Heat Treatments

2016-10-25
2016-36-0360
The Austempering heat treatment is a well-known solution to improve the mechanical properties of ductile cast irons, therefore being referred as 'ADI' (Austempered Ductile Iron). The improved mechanical properties of ADI's with respect to conventional ductile iron is attributed to its resulting microstructure, which contains mainly carbide-free bainite with stabilized retained austenite. More recently, ductile cast irons were submitted to another heat treatment, known as 'Quenching and Partitioning' (Q&P). In this case, the ductile cast iron is austenitized, quenched to a temperature between Mf and Ms temperatures and subsequently heated to a temperature above Ms in order to partition the carbon from the martensite to the remaining austenite. The resulting microstructure comprises mainly low carbon martensite, austenite (stabilized by the carbon partition) and carbide-free bainite. Such microstructure resulted in equal or better properties than ADI.
X