Refine Your Search

Topic

Author

Search Results

Journal Article

Analysis of Contamination Protection for Brake Rotor

2016-09-18
2016-01-1930
Contamination protection of brake rotors has been a challenge for the auto industry for a long time. As contamination of a rotor causes corrosion, and that in turn causes many issues like pulsation and excessive wear of rotors and linings, a rotor splash protection shield became a common part for most vehicles. While the rotor splash shield provides contamination protection for the brake rotor, it makes brake cooling performance worse because it blocks air reaching the brake rotor. Therefore, balancing between contamination protection and enabling brake cooling has become a key critical factor when the splash shield is designed. Although the analysis capability of brake cooling performance has become quite reliable, due to lack of technology to predict contamination patterns, the design of the splash protection shield has relied on engineering judgment and/or vehicle tests. Optimization opportunities were restricted by cost and time associated with vehicle tests.
Technical Paper

Adhesive Bonding Performance of GA Coated 590 MPa Tensile Strength Steels

2011-04-12
2011-01-1052
Advanced high strength steels (AHSS) are becoming major enablers for vehicle light weighting in the automotive industry. Crash resistant and fracture-toughened structural adhesives have shown potential to improve vehicle stiffness, noise, vibration, and harshness (NVH), and crashworthiness. They provide weight reduction opportunity while maintaining crash performance or weight increase avoidance while meeting the increasing crash requirement. Unfortunately, the adhesive bonding of galvanneal (GA)-coated steels has generally yielded adhesive failures with the GA coating peeling from the steel substrate resulting in poor bond strength. A limited study conducted by ArcelorMittal and Dow Automotive in 2008 showed that GA-coated AHSS exhibited cohesive failure, and good bond strength and crash performance. In order to confirm the reliable performance, a project focusing on the consistency of the adhesive bond performance of GA-coated steels of 590 MPa strength level was initiated.
Technical Paper

FEA Predictions and Test Results from Magnesium Beams in Bending and Axial Compression

2010-04-12
2010-01-0405
Finite element analysis (FEA) predictions of magnesium beams are compared to load versus displacement test measurements. The beams are made from AM60B die castings, AM30 extrusions and AZ31 sheet. The sheet and die cast beams are built up from two top hat sections joined with toughened epoxy adhesive and structural rivets. LS-DYNA material model MAT_124 predicts the magnesium behavior over a range of strain rates and accommodates different responses in tension and compression. Material test results and FEA experience set the strain to failure limits in the FEA predictions. The boundary conditions in the FEA models closely mimic the loading and constraint conditions in the component testing. Results from quasi-static four-point bend, quasi-static axial compression and high-speed axial compression tests of magnesium beams show the beam's behavior over a range of loadings and test rates. The magnesium beams exhibit significant material cracking and splitting in all the tests.
Technical Paper

Bonding Studies between Fracture Toughened Adhesives and Galvannealed Steels with Zinc Coating

2010-04-12
2010-01-0434
Adhesive bonding technology is rapidly gaining acceptance as an alternative to spot welding. This technology is helping automobile manufacturers reduce vehicle weight by letting them use lighter but stronger advanced high strength steels (AHSS's). This can make cars safer and more fuel efficient at the same time. The other benefits of this technology include its flexibility, ability to join dissimilar materials, distribute stress uniformly, provide sealing characteristics and sound dampening, and provide a moisture barrier, thus minimizing the chance for corrosion. The lap shear work reported in the late 1980s and early 1990s has led to the prevalent perception that the galvannealed (GA) coating can delaminate from the steels, resulting in poor joint performance. However, the above work was carried out on steels used primarily in automobile outer body panels.
Technical Paper

Mechanical and Thermophysical Properties of Magnesium Alloy Extrusions

2010-04-12
2010-01-0410
Magnesium alloy extrusions offer potentially more mass saving compared to magnesium castings. One of the tasks in the United States Automotive Materials Partnership (USAMP) ?Magnesium Front End Research and Development? (MFERD) project is to evaluate magnesium extrusion alloys AM30, AZ31 and AZ61 for automotive body applications. Solid and hollow sections were made by lowcost direct extrusion process. Mechanical properties in tension and compression were tested in extrusion, transverse and 45 degree directions. The tensile properties of the extrusion alloys in the extrusion direction are generally higher than those of conventional die cast alloys. However, significant tension-compression asymmetry and plastic anisotropy need to be understood and captured in the component design.
Technical Paper

Monotonic and Fatigue Behavior of Magnesium Extrusion Alloy AM30: An International Benchmark Test in the “Magnesium Front End Research and Development Project”

2010-04-12
2010-01-0407
Magnesium alloys are the lightest structural metal and recently attention has been focused on using them for structural automotive components. Fatigue and durability studies are essential in the design of these load-bearing components. In 2006, a large multinational research effort, Magnesium Front End Research & Development (MFERD), was launched involving researchers from Canada, China and the US. The MFERD project is intended to investigate the applicability of Mg alloys as lightweight materials for automotive body structures. The participating institutions in fatigue and durability studies were the University of Waterloo and Ryerson University from Canada, Institute of Metal Research (IMR) from China, and Mississippi State University, Westmorland, General Motors Corporation, Ford Motor Company and Chrysler Group LLC from the United States.
Technical Paper

Friction Damped Disc Brake Rotor

2010-04-12
2010-01-0077
Over the last five years, the automotive industry has experienced a trend towards niche performance vehicles equipped with high-output powertrains. These high performance vehicles also demand higher output braking systems. One method used to provide enhanced pedal feel and fade performance is to equip vehicles with higher apparent friction linings. The challenge then becomes how to design and manufacture these brake systems without high-frequency disc brake squeal and without paying a significant mass penalty. One alternative is to design disc brake rotors with increased damping. There are several options for increasing rotor damping. The classical approach is to increase the rotor's cast iron carbon content, thus increasing the internal material damping of the rotor. However, this methodology provides only a small increase in rotor damping. Alternatively, the rotor damping can be increased by introducing friction, sometimes referred to as Coulomb damping.
Technical Paper

Effect of Simulated Material Properties and Residual Stresses on High Cycle Fatigue Prediction in a Compacted Graphite Iron Engine Block

2010-04-12
2010-01-0016
Casting, machining and structural simulations were completed on a V8 engine block made in Compacted Graphite Iron (CGI) for use in a racing application. The casting and machining simulations generated maps of predicted tensile strength and residual stress in the block. These strength and stress maps were exported to a finite element structural model of the machined part. Assembly and operating loads were applied, and stresses due to these loads were determined. High cycle fatigue analysis was completed, and three sets of safety factors were calculated using the following conditions: uniform properties and no residual stress, predicted properties and no residual stress, and predicted properties plus residual stress.
Technical Paper

Development of an Aged Tire Durability Standard - Reinflation Study for Accelerated Laboratory Aging

2008-04-14
2008-01-1491
In the work leading to the TREAD Act, some members of Congress expressed the need for some type of aging test on light vehicle tires. Since no industry-wide recommended practice existed, the ASTM F09.30 Aged Tire Durability task group was established in 2002 to develop a test standard. During the first phase of development, it was found that the process of oxidative aging depleted the level of oxygen in some tires below the point at which aging could effectively continue. Therefore, in the second phase, a research module was formulated to determine the most appropriate method by which to maintain the oxygen concentration in the tire at a sufficiently high level. The research encompassed the evaluation of test data from laboratory aged tires whose oxygen concentration was kept elevated either through a top-off method or a vent/reinflate method. This presentation focuses on the analyses conducted to determine the appropriate method by which to maintain oxygen concentration in the tire.
Technical Paper

Comparison of OEM Automatic Transmission Fluids in Industry Standard Tests

2007-10-29
2007-01-3987
As a result of raised awareness regarding the proliferation of individual OEM recommended ATFs, and discussion in various forums regarding the possibility of ‘universal’ service fill fluids, it was decided to study how divergent individual OEM requirements actually are by comparing the fluids performance in industry standard tests. A bench-mark study was carried out to compare the performance of various OEM automatic transmission fluids in selected industry standard tests. All of the fluids evaluated in the study are used by certain OEMs for both factory and service fill. The areas evaluated included friction durability, oxidation resistance, viscosity stability, aeration and foam control. The results of this study are discussed in this paper. Based on the results, one can conclude that each ATF is uniquely formulated to specific OEM requirements.
Technical Paper

Durability Performance of Advanced Ceramic Material DPFs

2007-04-16
2007-01-0918
Dow Automotive has developed an ACM DPF substrate, characterized with light-weight, low pressure-drop, rapid regeneration, and excellent chemical resistance at high temperature. An uncatalyzed DPF was tested on a 2.0L common-rail diesel engine for over 100 soot loading and regeneration cycles, which included a combination of controlled regenerations, uncontrolled regenerations and incomplete regenerations. The DPF demonstrated high filtration efficiency and physical integrity throughout the entire test. The ACM DPF has also demonstrated excellent catalyst coating capability and performance. An ACM DPF with a total volume of three-liter and coated with the same catalyst formulation as the original catalyzed DPF, was used to replace the OEM four-liter catalyzed SiC DPF on a 2005 model-year 1.9L European diesel passenger car. It was demonstrated that the ACM DPF has lower pressure drop and faster regeneration than that of the OEM DPF.
Technical Paper

Optimizing the Advanced Ceramic Material for Diesel Particulate Filter Applications

2007-04-16
2007-01-1124
This paper describes the application of pore-scale filtration simulations to the advanced ceramic material (ACM) developed for use in advanced diesel particulate filters. The application required the generation of a three-dimensional substrate geometry to provide the boundary conditions for the flow model. An innovative stochastic modeling technique was applied matching chord length distribution and the porosity profile of the material. Additional experimental validation was provided by the single-channel experimental apparatus. Results show that the stochastic reconstruction techniques provide flexibility and appropriate accuracy for the modeling efforts. Early investigation efforts imply that needle length may provide a mechanism for adjusting performance of the ACM for diesel particulate filter (DPF) applications. New techniques have been developed to visualize soot deposition in both traditional and new DPF substrate materials.
Technical Paper

Lead-time Reduction in Stamping CAE and Die Face Development using Massively Parallel Processing in Forming Simulations

2007-04-16
2007-01-1678
Since 1997, General Motors Body Manufacturing Engineering - Die Engineering Services (BME-DES) has been working jointly with our software vendor to develop and implement a parallel version of stamping simulation software for mass production analysis applications. The evolution of this technology and the insight gained through the implementation of DMP/MPP technology as well as performance benchmarks are discussed in this publication.
Technical Paper

The Oxidative Stability of GM's DEXRON®-VI Global Factory Fill ATF

2006-10-16
2006-01-3241
A detailed description of the oxidative stability of GM's DEXRON®-VI Factory Fill Automatic Transmission Fluid (ATF) is provided, which can be integrated into a working algorithm to estimate the end of useful oxidative life of the fluid. As described previously, an algorithm to determine the end of useful life of an automatic transmission fluid exists and is composed of two simultaneous counters, one monitoring bulk oxidation and the other monitoring friction degradation [1]. When either the bulk oxidation model or the friction model reach the specified limit, a signal can be triggered to alert the driver that an ATF change is required. The data presented in this report can be used to develop the bulk oxidation model. The bulk oxidation model is built from a large series of bench oxidation tests. These data can also be used independent of a vehicle to show the relative oxidation resistance of this fluid, at various temperatures, compared to other common lubricants.
Technical Paper

General Motors DEXRON®-VI Global Service-Fill Specification

2006-10-16
2006-01-3242
During early 2005 General Motors released a newly developed ATF for the factory fill of all GM Powertrain stepped gear automatic transmissions. The new fluid provided significantly improved performance in terms of friction durability, viscosity stability, aeration and foam control and oxidation resistance. In addition, the fluid has the potential to enable improved fuel economy and extended drain intervals. Since the performance of the new fluid far exceeded that of the DEXRON®-III service fill fluids available at the time it became necessary to upgrade the DEXRON® service fill specification in order to ensure that similar fluids were available in the market for service and repair situations. This latest upgrade to the service fill specification is designated DEXRON®-VI [1].
Technical Paper

Wash off Resistant 1-Component Structural Adhesives

2006-04-03
2006-01-0975
The application of crash durable structural adhesives in modern cars design, to improve the driving durability, the overall vehicle stiffness, the crash resistance and to make real light weight constructions feasible is significantly gaining in importance. 1-component systems are already introduced in the market and used in automotive industries. Usually the use of these bonds in automotive industries is limited by a relatively low wash off resistance in the pre-treatment tanks of the paint shop. If no additional actions are taken, there is a severe risk of wash off of the adhesives up to the partial loss in functionality. Respectively contamination of the pre-treatment tanks and aftereffects damage the surface of the coated cars. To avoid wash off a thermal process (oven) to pre-gel the adhesive in the flanges of the Body-In-White (BIW)- bodies before entering the pre-treatment utility is necessary. This is a save but cost intensive solution.
Technical Paper

Advances in Indoor Tire Tread Wear Simulation

2006-04-03
2006-01-1477
Indoor or laboratory testing of tire tread wear offers many advantages over vehicle fleet testing. Advances in test equipment capabilities and the technologies for defining and simulating meaningful tire loading histories has made indoor tread wear testing a reality. Tire loading histories are influenced by vehicle characteristics, wear course and driving style, and tire stiffnesses. Methods for independently characterizing each of these are reviewed. A simulation technique, TS-Sim, is also described that combines specific vehicle, course and tire characterizations to create a tire load history. The vehicle characterization is critical to the process since both wear rate and various forms of uneven and irregular wear are strongly dependent on vehicle suspension/steering characteristics and on dynamic load transfer behavior. The characterization process involves mapping the vehicle over a practical range of acceleration, deceleration and cornering maneuvers.
Technical Paper

Performance Validation of an Advanced Diesel Particulate Filter With High Catalyst Loading Capacity

2005-10-24
2005-01-3696
Diesel particulate filters (DPF) made from Dow's advanced ceramic material (ACM) have already demonstrated high filtration efficiency, low pressure drop, and high temperature performance capabilities. In addition to these advantages of the ACM-DPF, it has been found to be well suited for use in combination with various catalyst coatings while maintaining it's overall advanced performance over a broad range of catalyst loadings. Our recent studies on catalyzed ACM DPF demonstrate that the unique micro structure of ACM is able to maintain significant amount of catalyst and washcoats. The characteristics of the ACM DPF pressure drop versus catalyst washcoats loading have been fully investigated. With defined coating techniques, ACM DPF can be loaded with three times the amount of washcoat than can a Silicon Carbide DPF without significantly increasing the pressure drop.
Technical Paper

Application of a Constrained Layer Damping Treatment to a Cast Aluminum V6 Engine Front Cover

2005-05-16
2005-01-2286
Constrained Layer Damping (CLD) treatments have long provided a means to effectively impart damping to a structure [1, 2 and 3]. Traditionally, CLD treatments are constructed of a very thin polymer layer constrained by a thicker metal layer. Because the adhesion of a thin polymer layer is very sensitive to surface finish, surfaces that a CLD treatment can be effectively applied to have historically been limited to those that are very flat and smooth. New developments in material technology have provided thicker materials that are very effective and less expensive to apply when used as the damping layer in a CLD treatment. This paper documents the effectiveness of such a treatment on a cast aluminum front cover for a V6 engine. Physical construction of the treatment, material properties and design criteria will be discussed. Candidate applications, the assembly process, methods for secondary mechanical fastening will be presented.
Technical Paper

A New 1:1 Low MDI Acoustical Foam System for Cavity Sealing Applications

2005-05-16
2005-01-2276
The well-known hazards of diphenylmethane diisocyanate (MDI) have resulted in the development of foams with low MDI emissions for use in vehicle body cavities. While low MDI acoustic foams have been successfully launched in the automotive market, non-standard dispense equipment has been required. The latest low MDI acoustic foam development is dispensed via standard meter mix equipment, at the volumetric ratio of 1:1, enabling capital reduction for ventilation and application processing. This paper describes the benefits associated with using a 1:1 low MDI foam system. Industrial hygien testing and qualification of this system as low MDI are reviewed. Acoustical performance testing including insertion loss and sound absorption are discussed.
X