Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Technical Paper

Intention Aware Motion Planning with Model Predictive Control in Highway Merge Scenario

2019-03-25
2019-01-1402
Human drivers navigate by continuously predicting the intent of road users and interacting with them. For safe autonomous driving, research about predicting future trajectory of vehicles and motion planning based on these predictions has drawn attention in recent years. Most of these studies, however, did not take into account driver’s intentions or any interdependence with other vehicles. In order to drive safely in real complex driving situations, it is essential to plan a path based on other driver’s intentions and simultaneously to estimate the intentions of other road user with different characteristics as human drivers do. We aim to tackle the above challenges on highway merge scenario where the intention of other road users should be understood. In this study, we propose an intention aware motion planning method using finite state machine and model predictive control without any vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I) communications.
Technical Paper

Driving Posture Evaluation through Electroencephalographic Measurement and Digital Human Modeling

2017-03-28
2017-01-1394
Drivers’ physical and physiological states change with prolonged driving. Driving for extended periods of time can lead to an increased risk of low back pain and other musculoskeletal disorders, caused by the discomfort of the seats. Static and dynamic are the two main categories must be considered within the seating development. The posture and orientation of the occupant are the important factors on static comfort. Driving posture measurement is essential for the evaluation of a driver workspace and improved seat comfort design. This study evaluated the comfortable driving posture through physiological and ergonomics measurements of an automotive premium driver seat. The physiological evaluation includes electroencephalographic (EEG) for brain waves, Biopac’s AcqKnowledge program, and subjective measurements on 32 healthy individuals. JACK simulation was used for the ergonomics evaluation, i.e., the magnitude of the spinal loads about lumbar vertebrae was estimated.
Technical Paper

Automotive ADAS Camera System Configuration Using Multi-Core Microcontroller

2015-03-10
2015-01-0023
It has become an important trend to implement safety-related requirements in the road vehicles. Recent studies have shown that accidents, which occurred when drivers are not focused due to fatigue or distractions, can be predicted in advance when using safety features. Advanced Driver Assistance Systems (ADAS) are used to prevent this kind of situation. Currently, many major tiers are using a DSP chip for ADAS applications. This paper suggests the migration from a DSP configuration to a Microcontroller configuration for ADAS application, for example, using a 32bit Multi-core Microcontroller. In this paper, the following topics will be discussed. Firstly, this paper proposes and describes the system block diagram for ADAS configuration followed by the requirements of the ADAS system. Secondly, the paper discusses the current solutions using a DSP. Thirdly, the paper presents a system that is migrated to a Multi-core microcontroller.
Journal Article

Validation of a Seamless Development Process for Real-time ECUs using OSEK-OS Based SILS/RCP

2008-04-14
2008-01-0803
An efficient development environments such as Software-in-the-Loop Simulation (SILS) and Rapid Control Prototyping (RCP) have been widely used to reduce the development time and cost of real-time ECUs. However, conventional SILS does not consider temporal behaviors caused by computation time, task scheduling, network-induced delays, and so on. As a result, the control performance of ECU is likely to be degraded after implementation. To overcome this problem, SILS/RCP which considers the temporal behaviors was suggested in the previous research. In this study, we validated the proposed SILS/RCP environments which are used to design an Electronic Stability Control (ESC) system which is one of the hard real-time control systems. The proposed SILS/RCP environments make it possible to realize ECUs in the early design phase by considering temporal behaviors.
Journal Article

Formal Design Process for FlexRay-Based Control Systems with Network Parameter Optimization

2008-04-14
2008-01-0277
FlexRay is a deterministic and fault-tolerant in-vehicle network(IVN) protocol. It is expected to become a practical standard for automotive communication systems. According to the FlexRay protocol specifications, there are about 60 configurable parameters which should be determined in the design phases. The parameters increase the complexities of FlexRay-based control system development. In this study, we are suggesting a formal design process for FlexRay-based control systems, which is focused on network parameter optimization. We introduce design phases from functional system models to implementations. These phases present formal ways for task allocation, node assignment, network configuration, and implementations. In the network configuration phase, two FlexRay core parameters are selected to optimize network design. Optimal methods of the core parameters provide concise guide lines for optimal communication cycle length and optimal static slot length.
Technical Paper

Smart Automotive Switch™ (SAS) for Improved Automotive Electronic Control Systems

2008-04-14
2008-01-1032
Electromechanical relays that are coupled with fuses have been used for controlling electrical loads in vehicles. In the past decade, semiconductor power switches have been developed for overcoming the physical limits of relays and fuses. Semiconductor power switches can not only replace relays and fuses but can also improve a system's reliability and efficiency. In this study, we introduce the Smart Automotive Switch (SAS), which is a smart high side power switch of Fairchild Korea semiconductor. Functional capabilities, such as power switching, protection and self-diagnosis of SASs are presented in case studies involving, for example, headlights, glow plugs, and fuel pump control systems. Through these experimental studies, the suitability of SASs is validated for designing improved automotive electronic control systems.
Technical Paper

Development of an Injector Driver for Piezo Actuated Common Rail Injectors

2007-08-05
2007-01-3537
In CRDI diesel engines, the piezo injector is gradually replacing the solenoid injector due to the quick response of the actuator. Operating performance of the injectors in the CRDI diesel engine has an influence on engine emissions. Therefore, accurate injector control is one of the most important parts of the CRDI engine control. The objective of this paper is the development of a piezo injector driver for CRDI diesel engines. Electrical characteristics of the piezo injector were analyzed. A control strategy for charging and discharging the actuator are proposed. The developed injector driver is verified by experiments under various fuel pressures, injection durations and driving circuit voltages.
Technical Paper

Sensor Fault Detection Algorithm for Continuous Damping Control(CDC) System

2007-08-05
2007-01-3560
This paper presents a model based sensor fault detection and isolation algorithm for the vertical acceleration sensors of the Continuous Damping Control (CDC) system, installed on the sprung mass. Since sensor faults of CDC system have a critical influence on the ride performance as well as the vehicle stability, the sensor fault detection algorithm must be implemented into the overall CDC algorithm. In this paper, each vertical acceleration sensor installed on the sprung mass (two in the front corners and one in the rear) separately estimates the vertical acceleration of the center of gravity of the sprung mass. Then, the sensor fault is detected by cross-checking all three vertical acceleration estimates independently obtained by the each vertical acceleration sensor.
Technical Paper

Offset Compensation Algorithms for the Yaw Rate and Lateral Acceleration Sensors

2007-08-05
2007-01-3561
The paper presents a new offset compensation method of a yaw rate sensor and a lateral acceleration sensor. It is necessary to compensate the offsets of the analog sensors, such as the yaw rate sensor and the lateral acceleration sensor, to acquire accurate signals. This paper proposes two different offset compensation algorithms, the sequential compensation method and the model based compensation method. Both algorithms are combined with the algorithm map depending on the vehicle driving status. The proposed algorithm is verified by the computer simulations.
Technical Paper

Software-in-the-Loop Simulation Environment Realization using Matlab/Simulink

2006-04-03
2006-01-1470
This paper presents the Matlab/Simulink-based Software-in-the-Loop Simulation (SILS) tool which is the co-simulator for temporal and functional simulations of control systems. The temporal behavior of a control system is mainly dependent on the implemented software and hardware such as the real-time operating system, target CPU and communication protocol. In this research, the SILS components with temporal attributes are specified as tasks, task executions, real-time schedulers, and real-time networks. Methods for realizing these components in graphical block representations are investigated with Matlab/Simulink, which is the most commonly used tool for designing and simulating control algorithms in control engineering. These components are modeled in graphical blocks of Matlab/Simulink.
Technical Paper

A Vehicle-Simulator-based Evaluation of Combined State Estimator and Vehicle Stability Control Algorithm

2005-04-11
2005-01-0383
The performance of an integrated Vehicle Stability Control (VSC) system depends on not only control logic itself, but also the performance of state estimator and control threshold. In conventional VSCs, a control threshold is designed by vehicle characteristics and is centered on average drivers. A VSC algorithm with variable control threshold has been investigated in this study. The control threshold can be determined by phase plane analysis of side slip angle and angular velocity. Vehicle side slip angle estimator has been evaluated using test data. Estimated side slip angle has been used in the determination of the control threshold. The performance of the proposed VSC algorithm has been investigated by human-in-the-loop simulation using a vehicle simulator. The simulation results show that the control threshold has to be determined with respect to the driver steering characteristics.
Technical Paper

A Sampling Period Decision for Robust Control of Distributed Control System using In-Vehicle Network

2004-03-08
2004-01-0211
This paper presents a preliminary study of a sampling period decision for robust control of a distributed control system based on an in-vehicle network with three types of data (real-time synchronous data, real-time asynchronous data, and nonreal-time asynchronous data). The architecture of automotive systems is currently changing from a number of standalone electronic control units (ECUs) to a functionally integrated distributed system which is linked by a network. The control performance of the integrated networked control system can be changed by the characteristics of time delays among the application ECUs. A basic parameter for a scheduling method of the networked control systems, a maximum allowable delay bound is used, which guarantees stability of the networked control system, and it is derived from the characteristics of the given plant using presented theorems.
X