Refine Your Search

Topic

Search Results

Technical Paper

Development of Flexible System for Demand and Supply Imbalance considering Battery Life

2023-09-29
2023-32-0111
We developed a flexible system with EVs for solving imbalance between electricity demand and supply avoiding degradation of EV’s battery life. Such flexible systems are commonly being examined but nothing the system which uses battery considering impact of its battery life to avoid shorten EV’s operation period. Therefore, we developed one of methodologies to select preferable load facilities based on imbalance trend and flexible prices. The imbalance trend means a duration of the imbalance. The flexible prices mean operation cost to provide flexibility. By comparing the flexible prices and operation profit, it is possible to prevent unnecessary operation. As a result, we demonstrated our flexible system works as designed based on these parameters.
Technical Paper

In-Cylinder Optical Measurement for Analyzing Control Factor of Ignition Phenomena under Diluted Condition

2020-09-15
2020-01-2048
To increase thermal efficiency of internal combustion engines, dilution combustion systems, such as lean burn and exhaust gas recirculation systems, have been developed. These systems require spark-ignition coils generating large discharge current and discharge energy to achieve stable ignition under diluted mixture conditions. Several studies have clarified that larger discharge current increases spark-channel stretch and decreases the possibility of spark channel blow-off and misfire. However, these investigations do not mention the effect of larger discharge current and energy on the initial combustion period. The purpose of this study was to investigate the relation among dilution ratio, initial-combustion period, and coil specifications to clarify the control factor of the dilution limit.
Technical Paper

Virtual FMEA and Its Application to Software Verification of Electric Power Steering System

2017-03-28
2017-01-0066
This paper presents the “Virtual Failure Mode and Effects Analysis (vFMEA)” system, which is a high-fidelity electrical-failure-simulation platform, and applies it to the software verification of an electric power steering (EPS) system. The vFMEA system enables engineers to dynamically inject a drift fault into a circuit model of the electronic control unit (ECU) of an EPS system, to analyze system-level failure effects, and to verify software-implemented safety mechanisms, which consequently reduces both cost and time of development. The vFMEA system can verify test cases that cannot be verified using an actual ECU and can improve test coverage as well. It consists of a cycle-accurate microcontroller model with mass-production software implemented in binary format, analog and digital circuit models, mechanical models, and a state-triggered fault-injection mechanism.
Technical Paper

Development of Breath-Alcohol-Detection System

2016-04-05
2016-01-1498
The problem of high fatal accident rates due to drunk driving persists, and must be reduced. This paper reports on a prototype system mounted on a car mock-up and a prototype portable system that enables the checking of the drivers’ sobriety using a breath-alcohol sensor. The sensor unit consists of a water-vapor-sensor and three semiconductor gas sensors for ethanol, acetaldehyde, and hydrogen. One of the systems’ features is that they can detect water vapor from human-exhaled breath to prevent false detection with fake gases. Each gas concentration was calculated by applying an algorithm based on a differential evolution method. To quickly detect the water vapor in exhaled breath, we applied an AC voltage between the two electrodes of the breath-water-vapor sensor and used our alcohol-detection algorithm. The ethanol level was automatically calculated from the three gas sensors as soon as the water vapor was detected.
Technical Paper

Multi-Swirl Type Injector for Port Fuel Injection Gasoline Engines

2014-04-01
2014-01-1436
The authors developed a multi-swirl type injector characterized by a short spray penetration length and fine atomization to improve exhaust emissions and fuel consumption for port fuel injection (PFI) gasoline engines. In PFI gasoline engines, fuel adhesion to an intake manifold causes exhaust emission. In addition, good mixing of fuel and air causes high combustion efficiency, and as a result the fuel consumption improves. Injectors therefore require two improvements: first, a short spray penetration to avoid fuel adhesion to the intake manifold, and second, a fine atomization spray to generate a good mixture formation of fuel and air. In this study, the authors developed a multi-swirl type injector equipped with multiple orifice holes featuring swirl chambers upstream of each orifice. The key feature of the proposed injector is “involute curve-formed swirl chambers” for generating a uniform thin liquid-film in the orifices.
Technical Paper

Analysis of Knocking Suppression Effect of Cooled EGR in Turbo-Charged Gasoline Engine

2014-04-01
2014-01-1217
The cooled EGR system has been focused on as a method for knocking suppression in gasoline engines. In this paper, the effect of cooled EGR on knocking suppression that leads to lower fuel consumption is investigated in a turbo-charged gasoline engine. First, the cooled EGR effect is estimated by combustion simulation with a knock prediction model. It shows that the ignition timing at the knocking limit can be advanced by about 1 [deg. CA] per 1% of EGR ratio, combustion phasing (50% heat release timing) at the knocking limit can be advanced by about 0.5 [deg. CA] per 1% of EGR ratio, and the fuel consumption amount can be decreased by about 0.4% per 1% of EGR ratio. Second, the effect of cooled EGR is verified in an experimental approach. By adding inert gas (N2/CO2) as simulated EGR gas upstream of the intake pipe, the effect of EGR is investigated when EGR gas and fresh air are mixed homogeneously. As a result, the ignition timing at the knocking limit is advanced by 7 [deg.
Technical Paper

Improved Thermal Efficiency Using Hydrous Ethanol Reforming in SI Engines

2013-09-08
2013-24-0118
The internal combustion engines waste large amounts of heat energy, which account for 60% of the fuel energy. If this heat energy could be converted to the output power of engines, their thermal efficiency could be improved. The thermal efficiency of the Otto cycle increases as the compression ratio and the ratio of specific heat increase. If high octane number fuel is used in engines, their thermal efficiency could be improved. Moreover, thermal efficiency could be improved further if fuel could be combusted in dilute condition. Therefore, exhaust heat recovery, high compression combustion, and lean combustion are important methods of improving the thermal efficiency of SI engines. These three methods could be combined by using hydrous ethanol as fuel. Exhaust heat can be recovered by the steam reforming of hydrous ethanol. The reformed gas including hydrogen can be combusted in dilute condition. In addition, it is cooled by directly injecting hydrous ethanol into the engine.
Technical Paper

Spray Atomization Study on Multi-Hole Nozzle for Direct Injection Gasoline Engines

2013-04-08
2013-01-1596
We investigated the size of fuel spray droplets from nozzles for direct injection gasoline (DIG) engines. Our findings showed that the droplet size can be predicted by referencing the geometry of the nozzle. In a DIG engine, which is used as part of a system to reduce fuel consumption, the injector nozzle causes the fuel to spray directly into the combustion chamber. It is important that this fuel spray avoid adhesion to the chamber wall, so multi-hole injection nozzles are used to obtain spray shape adaptability. It is also important that spray droplets be finely atomized to achieve fast vaporization. We have developed a method to predict the atomization level of nozzles for fine atomization nozzle design. The multi-hole nozzle used in a typical DIG injector has a thin fuel passage upstream of the orifice hole. This thin passage affects the droplet size, and predicting the droplet size is quite difficult if using only the orifice diameter.
Technical Paper

Model-Based Methodology for Air Charge Estimation and Control in Turbocharged Engines

2013-04-08
2013-01-1754
The purpose of this study is to develop model-based methodologies which employ thermo-fluid dynamic engine simulation and multiple-objective optimization schemes for engine control and calibration, and to validate the reliability of the method using a dynamometer test. In our technique, creating a total engine system model begins by first entirely capturing the characteristics of the components affecting the engine system's behavior, then using experimental data to strictly adjust the tuning parameters in physical models. Engine outputs over the full range of engine operation conditions as determined by design of experiment (DOE) are simulated, followed by fitting the provided dataset using a nonlinear response surface model (RSM) to express the causal relationship among engine operational parameters, environmental factors and engine output. The RSM is applied to an L-jetronic® air-intake system control logic for a turbocharged engine.
Technical Paper

Model-Based Technique for Air-Intake-System Control Using Thermo-Fluid Dynamic Simulation of SI Engines and Multiple-Objective Optimization

2011-10-06
2011-28-0119
We have developed a model-based control for the air intake system in a variable valve engine, employing total engine simulation, the response surface method and multi-objective optimization scheme. In our technique, we performed the simulation model tuning and validation, followed by the creation of a dataset for the polynomial regression analysis of the charging efficiency. A D-optimal design, robust least squares method, and likelihood-ratio test were demonstrated to yield a robust and accurate control model. Coupling the total engine simulator with a genetic algorithm, model based calibration for optimal valve timing stored in lookup table was carried out under multiple objectives and restrictions. The reliability of the implementation control model, which considers the effect of gas dynamics in the intake system, was confirmed using a model-in-the-loop simulation.
Technical Paper

Improvement of Thermal Efficiency Using Fuel Reforming in SI Engine

2010-04-12
2010-01-0584
Hydrogen produced from regenerative sources has the potential to be a sustainable substitute for fossil fuels. A hydrogen internal combustion engine has good combustion characteristics, such as higher flame propagation velocity, shorter quenching distance, and higher thermal conductivity compared with hydrocarbon fuel. However, storing hydrogen is problematic since the energy density is low. Hydrogen can be chemically stored as a hydrocarbon fuel. In particular, an organic hydride can easily generate hydrogen through use of a catalyst. Additionally, it has an advantage in hydrogen transportation due to its liquid form at room temperature and pressure. We examined the application of an organic hydride in a spark ignition (SI) engine. We used methylcyclohexane (MCH) as an organic hydride from which hydrogen and toluene (TOL) can be reformed. First, the theoretical thermal efficiency was examined when hydrogen and TOL were supplied to an SI engine.
Technical Paper

A Model-Based Technique for Spark Timing Control in an SI Engine Using Polynomial Regression Analysis

2009-04-20
2009-01-0933
Model-based methodologies for the engine calibration process, employing engine cycle simulation and polynomial regression analysis, have been developed and the reliability of the proposed method was confirmed by validating the model predictions with dynamometer test data. From the results, it was clear that the predictions by the engine cycle simulation with a knock model, which considers the two-stage hydrocarbon ignition characteristics of gasoline, were in good agreement with the dynamometer test data if the model tuning parameters were strictly adjusted. Physical model tuning and validation were done, followed by the creation of a dataset for the regression analysis of charging efficiency, EGR mass, and MBT using a 4th order polynomial equation. The stepwise method was demonstrated to yield a logarithm likelihood ratio and its false probability at each term in the polynomial equation.
Technical Paper

A Urea-Dosing Device for Enhancing Low-Temperature Performance by Active-Ammonia Production in an SCR System

2008-04-14
2008-01-1026
A new urea-dosing device with an active-ammonia production function was developed. This function is achieved by an electrically heated bypass passage with a hydrolysis catalyst for urea-to-ammonia conversion. The new device also has the function of mixing ammonia and exhaust gas. It is compact and has low-pressure loss by using the vortex occurring at the back of a static vane. We built a trial device for a small diesel engine and obtained steady state and transient data. The heated-bypass concept can be used in the aftertreatment system of passenger cars. Although active-ammonia production consumes electric power, a predictive calculation of power consumption (based on experimental results) shows that the developed bypass heater can suppress the energy consumption enough not to harm the high-energy efficiency of diesel engines.
Technical Paper

A Study of a New Aftertreatment System (2): Control of Urea Solution Spray for Urea-SCR

2006-04-03
2006-01-0644
The urea-SCR system is one of the most promising aftertreatment systems for future automotive diesel engines. We developed a urea dosing device with twin urea injectors for onboard applications, to enhance the NOx reduction performance at low exhaust temperatures and to lower the electric power consumption of the SCR system. The injectors operate with a single-phase urea solution, without air assist. Of the injectors, one is used to supply urea to a bypass passage routing the exhaust, during low exhaust temperatures. The other injector is located on the wall of the main exhaust duct, directly supplying urea to the exhaust. This direct injection method has a uniform spray distribution problem. A set of impact plates were used to distribute the spray. Impact plates have a high potential for deposition, but use of film boiling was considered. A thermal analysis was conducted and as a result, deposit conditions were theoretically derived. This was confirmed through experiments.
Technical Paper

Fractal Dimension Growth Model for SI Engine Combustion

2004-06-08
2004-01-1993
Time-resolved continuous images of wrinkling flame front cross-sections were acquired by a laser-light sheet technique in an optically accessible spark ignition engine. The test engine was operated at various engine speeds and compression ratios. The fractal dimension of the curve, D2, was measured in a time series for each cycle. Analysis of the data shows that as the flame propagates the fractal dimension, D2, is close to unity a short time after spark ignition and then increases. Examination of the relationship between the growth rate of the fractal dimension, ΔD2/Δt, and D2 reveals that the higher D2 is, the lower ΔD2/Δt becomes. An Empirical equation for ΔD2/Δt was derived as a function of the ratio of the turbulence intensity to the laminar burning velocity and pressure. This model was tested in an SI engine combustion simulation, and results compared favorably with experimental data.
Technical Paper

Effect of Spray Characteristics on Combustion in a Direct Injection Spark Ignition Engine

1998-02-23
980156
Meeting the future exhaust emission and fuel consumption standards for passenger cars will require refinements in how the combustion process is carried out in spark ignition engines. A direct injection system decrease fuel consumption under road load cruising conditions, and stratified charge of the fuel mixture is particularly effective for ultra lean combustion. On the other hands, there are requirements for higher output power of gasoline engines. A direct injection system for a spark ignition engine is seen as a promising technique to meet these requirements. To get higher output power at wide open throttle conditions, spray characteristics and in-cylinder air flow must be optimized. In this paper, the engine system, which has a side injection type engine and flat piston, was investigated. We tried some injectors, which have different spray characteristics, and examined effects of spray characteristics on combustion of the direct injection gasoline engine.
Technical Paper

A New Engine Control System Using Direct Fuel Injection and Variable Valve Timing

1995-02-01
950973
A new engine drivetrain control system is described which can provide a higher gear ratio and leaner burning mixture and thus reduce the fuel consumption of spark ignition engines. Simulations were performed to obtain reduced torque fluctuation during changes in the air - fuel ratio and gear ratio, without increasing nitrogen oxide emissions, and with minimum throttle valve control. The results show that the new system does not require the frequent actuation of throttle valves because it uses direct fuel injection, which increases the air - fuel ratio of the lean burning limit. It also achieves a faster response in controlling the air mass in the cylinders. This results in the minimum excursion in the air - fuel ratio which in turn, reduces nitrogen oxide emissions.
Technical Paper

An Automatic Parameter Matching for Engine Fuel Injection Control

1992-02-01
920239
An automatic matching method for engine control parameters is described which can aid efficient development of new engine control systems. In a spark-ignition engine, fuel is fed to a cylinder in proportion to the air mass induced in the cylinder. Air flow meter characteristics and fuel injector characteristics govern fuel control. The control parameters in the electronic controller should be tuned to the physical characteristics of the air flow meter and the fuel injectors during driving. Conventional development of the engine control system requires a lot of experiments for control parameter matching. The new matching method utilizes the deviation of feedback coefficients for stoichiometric combustion. The feedback coefficient reflects errors in control parameters of the air flow meter and fuel injectors. The relationship between the feedback coefficients and control parameters has been derived to provide a way to tune control parameters to their physical characteristics.
Technical Paper

Air-Fuel Ratio Sensor Utilizing Ion Transportation in Zirconia Electrolyte

1991-02-01
910501
To detect an air-fuel ratio in wide range is very important to control the automotive engines with low fuel consumption and low exhaust emissions. Although the application of zirconia electrolyte for this purpose has been proposed by the authors several years ago, there remained several problems due to the contamination of gas diffusion apertures which are exposed to the exhaust gas environment. Here the behavior of ions transported in zirconia electrolyte have been analyzed to optimize the structure and characteristics, and to guarantee the long life operation of sensor. Gas contents and their reactions in combustion process under the wide range air-fuel ratio have been analyzed, and these results were reflected to the analysis of ion transportation in zirconia electrolyte. Experimental results supported the analytical results, and they showed the possibilities of long life operation of zirconia air-fuel ratio sensor utilizing ion transportation phenomena.
Technical Paper

Study on Mixture Formation and Ignition Process in Spark Ignition Engine Using Optical Combustion Sensor

1990-09-01
901712
Mixture formation and the ignition process in 4 cycle 4 cylinder spark ignition engines were investigated, using an optical combustion sensor that combines fiber optics with a conventional spark plug. The sensor consists of a 1-mm diameter quartz glass optical fiber cable inserted through the center of a spark plug. The tip of the fiber is machined into a convex shape to provide a 120-degree view of the combustion chamber interior. Light emitted by the spark discharge between spark electrodes and the combustion flames in the cylinder is transmitted by the optical cable to an opto-electric transducer. As a result, the ignition and combustion process which depends on the mixture formation can be easily monitored without installing transparent pistons and cylinders. This sensor can give more accurate information on mixture formation in the cylinders.
X