Refine Your Search

Topic

Search Results

Technical Paper

Oxidative Deterioration Properties of FAME-Blended Diesel Fuel

2018-04-03
2018-01-0924
The correlation between newly approved EN 15751 and the internal diesel injector deposits (IDID) due to fuel oxidative deterioration has not been made clear. In the present research, the Rancimat method was slightly modified to research the relationship between fuel oxidative deterioration and the deterioration products generated from the fuel. After heating fuel at 120 to 150°C for a set period, insoluble deterioration products (IDID-like substances) were generated and their weights were measured. At the same time, the shifts of the conductivity in trap water were analyzed from a new perspective, and its relationship with the deterioration products was investigated. At 120°C and 130°C, conductivity rising rates after the inflection point (this set of data represents the rate of organic acid generation in the fuel, and we named “Oxidation rate”) exhibited a strong correlation with the quantity of deterioration products.
Technical Paper

Development of Fuel Economy Engine Oil for Heavy Duty Diesel Engine

2015-09-01
2015-01-2034
More stringent emissions regulations, fuel economy standards, and regulations are currently being discussed to help reduce both CO2 and exhaust emissions. Vehicle manufacturers have been developing new engine technologies, such as downsizing and down-speeding with reduced friction loss, improved engine combustion and efficiency, heat loss recycling, power-train friction loss recycling, and reduced power-train friction loss. The use of more efficient fuel economy 5W-30 engine oils for heavy duty commercial vehicles has started to expand since 2009 in Japan as one technological solution to help reduce CO2 emissions. However, fuel economy 5W-30 oils for use in heavy duty vehicles in Europe are mainly based on synthetic oils, which are much expensive than the mineral oils that are predominantly used in Japan.
Journal Article

Molecular Structure of Hydrocarbons and Auto-Ignition Characteristics of HCCI Engines

2014-11-11
2014-32-0003
The chemical composition of marketed gasoline varies depending on the crude oil, refinery processes of oil refineries, and season. The combustion characteristics of HCCI engines are very sensitive to the fuel composition, and a fuel standard for HCCI is needed for HCCI vehicles to be commercially viable. In this paper, the effects of the structure of the fuel components on auto-ignition characteristics and HCCI engine performance were investigated. The engine employed in the experiments is a research, single cylinder HCCI engine with a compression ratio of 14.7. The intake manifold was equipped with a heater attachment allowing control of the intake air temperature up to 150 °C at 2000 rpm. Thirteen kinds of hydrocarbons, 4 kinds of paraffins, 3kinds of naphthenes, and 6 kinds of aromatics, were chosen for the investigation, and 20vol% of each of the pure hydrocarbons was blended with the 80 vol% of PFR50 fuel.
Technical Paper

Effects of Alloying Elements on Wear Resistance of Automobile Cast Iron Materials

2014-04-01
2014-01-1011
Wear resistance is the important characteristics of cast iron materials for automobile components. Because the phenomenon of wear is a highly complicated mechanism involving many factors such as surface conditions, chemical reactions with lubricants, metals, and physics, it has not been fully explained. Therefore, it will be necessary to confirm and explain the wear mechanism to develop effective improvements. The purpose of this study was to investigate the structural change behavior and effects of alloying elements when the material top surface becomes worn, in order to improve the wear resistance of cylinder liners and other cast iron materials. For this purpose, several types of prototype materials were produced, and the relationship between components and wear resistance was investigated by using a laser microscope for quantitative observation of the degree of pearlite microstructure fineness.
Technical Paper

Identification of Factors Influencing Premixed Diesel Engine Noise and Mechanism of Noise Reduction by EGR and Supercharging

2013-04-08
2013-01-0313
To determine the engine noise reduction methods, an engine noise research was conducted experimentally with a PCCI diesel engine. The engine employed in the experiments was a supercharged, single-cylinder DI diesel engine with a high pressure common rail fuel injection system. The engine noise was sampled by two microphones and the sampled engine noise was averaged and analyzed by an FFT sound analyzer. The engine was equipped with a pressure transducer and the combustion noise was calculated from the power spectrum of the FFT analysis of the in-cylinder pressure wave form and the cross power spectrum of the sound pressure of the engine noise. It is well known that the maximum pressure rise rate is the main parameter related to the engine noise. The PCCI engine was operated at a 1.0 MPa/°CA maximum pressure rise rate to eliminate the effects of the maximum pressure rise rate, and parameters which had the dominant effect on engine noise and combustion noise were determined.
Technical Paper

Mechanisms in Reducing Smoke and NOx from BDF Combustion by Ethanol Blending and EGR

2007-04-16
2007-01-0622
Palm oil has the important advantage of productivity compared to other vegetable oils such as rapeseed oil and soybean oil. However, the cold flow performance of palm oil methyl ester (PME) is poorer than other vegetable oil based biodiesel fuels. Previous research by the authors has shown that ethanol blending into PME improves the cold flow performance and considerably reduces smoke emission. The reduced smoke may be expected to allow an expansion in the EGR limit and lead to reduced NOx. This paper experimentally analyses the influence of EGR on smoke and NOx emissions from the diesel combustion with PME/ethanol blended fuel. The mechanisms in the smoke reduction are also analyzed.
Technical Paper

Study on the Detection of Misfiring Cylinder in a Heavy Machinery Multi-Cylinder Diesel Engine under the State of Rotational Fluctuation

2006-10-31
2006-01-3550
Mechanical problems of heavy machinery can cause serious losses [1, 2]. And a diesel engine with a misfiring cylinder is likely to break down in a short period of time. In this system, a minimum number of sensors will be installed in the diesel engine to build a diagnosis system which detects anomaly behavior by analyzing the acceleration waveform using statistical analysis of R.M.S. value. This method is superior to traditional methods in point of simplicity, and this system can be applied to the ready-made machinery easily. This system will make it possible to manage the engine from a remote location by data transfer [3]. However, previous system was limited in case of an idling state of the engine. It was successful to detect misfiring condition of cylinder on the engine under the state of rotational fluctuation in this research.
Technical Paper

A Study on the Measurement and Estimation Method of Skew Motion of Roller-Tappets in an OHV Type DI Diesel Engine

2006-10-16
2006-01-3348
Roller-Tappets have been adopted on the valve train systems of OHV type diesel engines, due to their low friction losses. When a roller-tappet is actuated by the cam, it moves upwards and downwards in the guide with a slight skew motion. This motion affects the life of cam and tappets. The purpose of this study was, therefore, to establish the skew estimation method. The skew motion was measured under the engine motoring condition, and its calculation based on the assumed mechanism was carried out. The calculated skew motion showed good agreement with the measured.
Technical Paper

An Application of a Digital Hand to Ergonomic Assessment of Handheld Information Appliances

2006-07-04
2006-01-2325
Recently, as CAD systems have spread, style design with digital mockups has been used. But physical mockups are still used to evaluate the ergonomic design of products. However, the conventional methods of the evaluation using a physical mockup of a product are inefficient in an upstream style design process, for it takes time and money. So, our research purpose is to develop a system for ergonomics design, which enables ergonomic assessment for a handheld information appliance without “real” subjects and physical mockups by integrating a digital hand with a product model and its task operation model.
Technical Paper

Estimation of Five Anatomical Landmarks on a Foot Model's Toes Based on Surface Shape

2005-06-14
2005-01-2730
We propose producing a body model consisting of anatomical landmarks used in product design from point clouds from a three-dimensional scanner. We previously proposed producing a foot model automatically by deforming the template of known landmarks using free-form deformation (FFD), but shapes of actual toe tips vary widely from the template. Here we propose extracting five landmarks on the toes of a foot model.
Technical Paper

The Wear Mechanism of Piston Rings and Cylinder Liners Under Cooled-EGR Condition and the Development of Surface Treatment Technology for Effective Wear Reduction

2005-04-11
2005-01-1655
The superior fuel economy of diesel engines compared to gasoline engines is favorable in reducing carbon dioxide (CO2) emissions. On the other hand, the reductions in nitrogen oxides (NOx) and particulate matter (PM) emissions are technically difficult, thus the improvement in the emission reduction technologies is important. Although the cooled exhaust gas recirculation (cooled-EGR) is the effective method to reduce NOx emissions, it is known to have durability and reliability problems, especially of the increased wear of piston rings and cylinder liners. Therefore, the degree of cooling and amount of EGR are both limited. To apply the cooled-EGR more effectively, the wear reduction technology for such components are indispensable. In this study, the negative effects of cooled-EGR on the wear are quantified by using a heavy-duty diesel engine, and its wear mechanism is identified.
Technical Paper

Combustion in a Two-stage Injection PCCI Engine With Lower Distillation-temperature Fuels

2004-06-08
2004-01-1914
The combustion characteristics in a partially premixed charge compression ignition (PCCI) engine with n-hexane were compared with ordinary diesel fuel to evaluate combustion improvements with lower distillation-temperature fuels. In the PCCI engine, a lean mixture was formed reasonably with early stage injection and the additional fuel was supplied with a second stage fuel injection after ignition. With n-hexane, thermal efficiency improved while simultaneously maintaining low NOx and smokeless combustion. A CFD analysis simulated the mixture formation processes and showed that the uniformity of the mixture with the first stage injection improves with lower distillation-temperature fuels.
Technical Paper

Integrated Internal EGR and Compression Braking System for Hino's E13C Engine

2004-03-08
2004-01-1313
An integrated engine subsystem incorporating Internal Exhaust Gas Recirculation (IEGR) or alternatively referred to as Pulse EGR™ and Compression Release Retarding (CRR) functions has been developed and introduced to production with the new E13C engine from Hino Motors Ltd. This new system provides the nitrous oxide (NOX) reduction benefit of IEGR and the vehicle control and brake saving benefits of CRR in a single integrated package, without the need for increased vehicle cooling capacity or additional components external to the engine. The product is a result of a close cooperation between two companies, Hino Motors Ltd. of Japan and Jacobs Vehicle Systems, Inc. of the U.S.A.
Technical Paper

Noise Generating Mechanism at Idling for a Four-cylinder In-line Diesel Engine

2003-05-05
2003-01-1720
The separation of combustion noise and mechanical noise from the total noise of a four-cylinder in-line diesel engine at idling was carried out with high accuracy by changing the fuel injection timing. The mechanical noise, which accounts for the major share at 93%, was then separated into noises from the typical mechanical causes, and the valve train was found to be the major noise source. From analysis of the noise generating mechanism for the valve train, it was clarified that the noise was caused mainly by the gear rattling owing to the variation in the camshaft drive torque.
Technical Paper

Development of an Intelligent Truck in ASV-2 Project in Japan

2001-10-01
2001-01-3404
The Advanced Safety Vehicle (ASV) project phase 2 was organized by the Japanese ministry of lands, infrastructures and transport in 1996 as a five year project. Hino Motors participated in the project and developed an intelligent truck “HINO ASV-2”. HINO ASV-2 was equipped with safety systems for accident prevention and accident avoidance, which were most effective in reducing accidents in freight transport. These intelligent systems aimed to reduce driving fatigue, minimize the chance of driver’s mistake, and prevent the occurrence of accidents. Human-machine interface, and front underrun protection device were also studied. Through the development of the ASV systems, the feasibility and basic functions of these systems were studied. Further development is necessary to implement the ASV systems in production vehicles.
Technical Paper

Development of Low Fuel Consumption, High Durability, and Low Emissions J-Series Engines

1999-03-01
1999-01-0830
Environmental protection is now one of the most important social concerns in the world. In 1998, emission controls in the US required the reduction of NOx by 20% from the 1994 limit. Hino Motors has developed new J-series medium-duty diesel engines for trucks that meet the US 1998 emissions regulations. The engines comprise turbocharged and aftercooled 4- and 6-cylinder engines of the same cylinder bore and stroke. The engines feature a 4-valve system, OHC valve train design, centered nozzle arrangement, and an optimum combustion chamber design, which achieved uniform combustion. With these features, the maximum combustion temperature was decreased, and hence reduced the NOx, smoke, and PM emissions. A muffler integrated with a catalytic converter (catalytic muffler) was adopted to reduce PM emissions further. The engines with the catalytic muffler have successfully met the US 1998 emissions regulations.
Technical Paper

A Study on Cam Wear Mechanism with a Newly Developed Friction Measurement Apparatus

1998-10-19
982663
The requirements for emission control, lower fuel consumption and higher engine output have changed the engine valve train system to 4-valve/cylinder and higher cam lift designs, and these changes make the cam/tappet lubrication conditions more severe than before. Under such a working condition, there is a high possibility that cam/tappet surface damages such as scuffing, pitting and wear may occur. Among the damages, the wear of cam/tappet is the most difficult to predict since the wear mechanism still remains unclear. To understand the lubrication condition and therefore, the wear mechanism at the cam/tappet contact, friction was measured with a newly developed apparatus. Measurement results showed that the lubrication condition between cam and tappet is predominantly in the mixed and boundary lubrication conditions.
Technical Paper

Development of J-Series Engine and Adoption of Common-Rail Fuel Injection System

1997-02-24
970818
Hino has developed new J-series medium-duty diesel engines for trucks and buses. The new J-series comprises four, five and six-cylinder engines with the same cylinder bore and stroke and with both naturally aspirated and charge air cooled. Both output and torque have been enhanced along with fuel efficiency in an engine that is lighter and more compact than ever and reaches new heights of durability and reliability. J-series engine features a 4-valve system and OHC valve train design, which achieved an uniform combustion by a centered nozzle and combustion chamber design. This decreases the maximum combustion temperature and hence improved the NOx,smoke and PM emissions. And a reduced pumping loss results in improving the fuel consumption. J-series engines thus meet the Japanese 1994 emission regulations. Another feature is a fully electronically controlled common-rail fuel injection system, which is equipped in a specified engine of naturally aspirated 6 cylinder.
Technical Paper

Formability of Deep Oil Sump for Heavy-Duty Truck Engines Using Vibration Damping Steel Sheets

1994-03-01
940944
Recently, as one of the effective measures for engine noise reduction, vibration damping steel sheets (VDSS) have been increasingly applied to engine oil sumps. This paper describes the formability of VDSS. Various factors closely related to drawability are considered. This study has been carried out in a production engineering process of manufacturing exceedingly deep, single blank sheet, oil sump for heavy-duty truck diesel engines. Some treatment of the surface of the VDSS was found to be a principal factor influencing deep drawability.
Technical Paper

Analysis and Improvement of Bus Body Vibration Excited by Road Surface Roughness

1993-05-01
931312
Recently, a long distance Inter City Bus Network has been developed in Japan. The maxi mum traveling distance is approximately 1,000 km. The driver and passengers must endure long periods of sitting in the same seat. Therefore, the ride comfort ability is the most important characteristic for the Inter City Bus. Noise and vibration level have the greatest effect on ride comfort, therefore they must be considerably reduced to realize the good comfortability. This paper presents the methods of analysis and improvement to reduce the bus body vibration excited by road surface roughness. Modal Analysis Method and Finite Element Method are applied to the bus body construction. Further more, the relationship between the bus body vibration and engine suspension system characteristics are investigated.
X