Refine Your Search

Topic

Author

Search Results

Technical Paper

Investigation of Fuel Economy Prediction Technology Considering Engine Thermal Flow for Hybrid Electric Vehicle, and Application to Vehicle Development Process

2024-04-09
2024-01-2408
Powertrain development requires an efficient development process with no rework and model-based development (MBD). In addition, to performance design that achieves low CO2 emissions is also required. Furthermore, it also demands fuel economy performance considering real-world usage conditions, and in North America, the EPA (U.S. Environmental Protection Agency) 5-cycle, which evaluates performance in a combination of various environments, is applied. This evaluation mode necessitates predicting performance while considering engine heat flow. Particularly, simulation technology that considers behavior based on engine temperature for Hybrid Electric Vehicle (HEV) is necessary. Additionally, in the development trend of vehicle aerodynamic improvement, variable devices like Active Grille Shutter (AGS) are utilized to contribute to reducing CO2 emissions.
Technical Paper

Development of Active Noise Control System Optimized for Road Noise Reduction

2023-05-08
2023-01-1040
In this paper, a newly developed Active Noise Control (ANC) system is introduced, that effectively reduces road noise, which becomes a major issue with electrified vehicles, and that enhances vehicle interior sound levels matching seamless acceleration by electric drive. Conventionally, reducing road noise using ANC requires numerous sensors and speakers, as well as a processor with high computing power. Therefore, the increase in system cost and the complexity of the system are obstacles to its spread. To overcome these issues, this system is developed based on four concepts. The first is a modular system configuration with unified interface to apply to various vehicle types and grades. The second is the integration and optimal placement of noise source reference sensors to achieve both reduction in number of parts and noise reduction performance.
Technical Paper

Analysis of CVT Element Vibration by In-Situ Measurement

2020-04-14
2020-01-0906
When the belt contacts a pulley in a pushing belt-type CVT, vibration is generated by frictional force due to rubbing between the individual elements that are components of the belt, which is said to increase wear and noise. The authors speculated that the source of that vibration is misalignment of the secondary pulley and primary pulley V-surfaces. To verify that phenomenon, a newly developed micro data logger was attached to an element of a mass-produced metal pushing V-belt CVT and the acceleration was measured at rotations equal to those at drive (1000 to 2500 r/m). In addition, the results of calculations using a behavior analysis model showed that changes in pulley misalignment influence element vibration, and that the magnitude of the vibration is correlated to the change in the metal pushing V-belt alignment immediately before the element contacts the pulley.
Technical Paper

A Study of Vibration Reducing Effect on Vehicle Dynamics by Hydraulic Damper on Body Structure

2019-04-02
2019-01-0171
This research investigated the mechanism of the effects of hydraulic dampers, which are attached to vehicle body structures and are known by experience to suppress vehicle body vibration and enhance ride comfort and steering stability. In investigating the mechanism, we employed quantitative data from riding tests, and analytical data from simplified vibration models. In our assessment of ride comfort in riding tests using vehicles equipped with hydraulic dampers, we confirmed effects reducing body floor vibration in the low-frequency range. We also confirmed vibration reduction in unsprung suspension parts to be a notable mechanical characteristic which merits close attention in all cases. To investigate the mechanism of the vibration reduction effect in unsprung parts, we considered a simplified vibration model, in which the engine and unsprung parts, which are rigid, are linked to the vehicle body, which is an elastic body equipped with hydraulic dampers.
Technical Paper

Analysis of Rotational Vibration Mechanism of Camshaft at High Engine Speed in Engines with In-Line Four-Cylinder DOHC Configuration

2018-10-30
2018-32-0072
In engines having an inline four cylinder DOHC configuration, the rotational vibrations of camshaft increase at high engine speeds above 10000 rpm, causing an increase of tension in the cam chain. It is therefore difficult to realize an optimum designing of a cam chain system when the durability has to be taken into considerations. Using the simulation we analyzed in this research how the rotational vibrations and tension increase at high engine speeds in an inline four cylinder DOHC engine. As its consequent, it is understood that the increases of rotational vibrations and tension caused by the resonance of the spring mass vibration system in which the cam chain serves as springs and the camshafts as the equivalent masses. Also it is found out that the vibration system is of a unique non-linear type in which the resonance of the fourth order frequency is also excited by the crankshaft torque fluctuations of the second order frequency.
Technical Paper

Study on Weave Behavior Simulation of Motorcycles Considering Vibration Characteristics of Whole Body of Rider

2018-10-30
2018-32-0052
In motorcycles, the mass difference between a vehicle and a rider is small and motions of a rider impose a great influence on the vehicle behaviors as a consequence. Therefore, dynamic properties of motorcycles should be evaluated not merely dealing with a vehicle but considering with a man-machine system. In the studies of a simulation for vehicle dynamics, various types of rider models have been proposed and it has already been reported that rider motions have a significant influence on the dynamic properties. However, the mechanism of the interaction between a rider and a vehicle has not been clarified yet. In our study, we focused on weave motion and constructed a full vehicle simulation model that can reflect the influences of the movements of the rider’s upper body and lower body. To construct the rider model, we first measured the vibrational characteristics of a human body using a vibration test bench.
Technical Paper

Research of Steering Grasping to Take over Driver from System

2018-04-03
2018-01-1068
Lane departure prevention systems are able to detect imminent departure from the road, allowing the driver to apply control to prevent lane departure. These systems possess enormous potential to reduce the number of accidents resulting from road departure, but their effectiveness is highly reliant on their level of acceptance by drivers. The effectiveness of the systems will depend on when they are providing driving assistance, what level of laxness in terms of maintaining contact with the steering wheel is allowed on the part of the driver, and what level of assistance the system provides. This paper will discuss research on the minimum necessary contact and contact strength with the steering wheel on the part of the driver when a lane departure prevention system is in operation.
Technical Paper

Influence of Shock Absorber Friction on Vehicle Ride-Comfort Studied by Numerical Simulation Using Classical Single Wheel Model

2018-04-03
2018-01-0692
Along with the suspension improvement in these two decades, it is well known that the suspension friction force became one of major parameters to affect ride comfort performance. However, it was difficult to carry out quantitative prediction on ride comfort improvement against friction force change with high correlation. It was difficult to analyze correlation between actual vehicle performance and simulation since there were difficulties in controlling damping force and friction individually. On the other hand, magneto-rheological shock absorber (MR Shock) has had several applications and widely spread to passenger vehicles. The large variation and high response of damping force especially in slow piston speed region contributes to achieve an excellent vehicle dynamics performance. However, MR Shock shows the high friction characteristics, due to the unique sliding regime of internal parts. It is said that this high friction characteristic is causing obstacles in ride-comfort.
Technical Paper

Acceleration of Iterative Vibration Analysis for Form Changes in Large Degrees-of-Freedom Engine Model

2018-04-03
2018-01-1290
Operational analysis of automotive engines using flexible multi-body dynamics is increasingly important from the viewpoint of multi-objective optimization as it can predict not only vibration, but also stress and friction at the same time. Still, the finite element (FE) models used in this analysis have large degrees-of-freedom, so iterative calculation takes a lot of time when there is form change. This research therefore describes a technique that applies a modal differential substructure method (a technique that reduces the degrees of freedom in a FE model) that can simulate form changes in FE models by changing modal mass and modal stiffness in reduced models. By using this method, non-parametric form change in FE model can be parametrically simulated, so it is possible to speed up repeated vibration calculations. In the proposed method, FE model is finely divided for each form change design area, and a reduced model of that divided structure is created.
Journal Article

Prediction Method for Water Intrusion into the Engine Air Intake Duct while Running on Flooded Road at the Early Stage of Vehicle Development

2017-03-28
2017-01-1322
Vehicles are required durability in various environments all over the world. Especially water resistance on flooded roads is one of the important issues. To solve this kind of problem, a CFD technology was established in order to predict the water resistance performance of the vehicle at the early development stage. By comparison with vehicle tests on flooded roads, it is clarified the following key factors are required for accurate prediction; the vehicle velocity change, the vehicle height change and the air intake flow rate. Moreover, these three key factors should be appropriately determined from vehicle and engine specification to predict water intrusion for flooded roads at the early stage of development. In this paper, a methodology which determines appropriate analysis conditions mentioned above for flooding simulation from vehicle and engine specification is described. The methodology enables us to determine whether the vehicle provides sufficient waterproofness.
Journal Article

Development and Application of FM Multipath Distortion Rate Measurement System Using a Fading Emulator Based on Two-Stage Method

2016-04-05
2016-01-0082
The suitability of FM radio receivers for automobiles has conventionally been rated by evaluating reception characteristics for broadcast waves in repeated driving tests in specific test environments. The evaluation of sound quality has relied on the auditory judgment due to difficulties to conduct quantitative evaluations by experiments. Thus the method had issues in terms of the reproducibility and objectivity of the evaluations. To address these issues, a two-stage method generating a virtual radio wave environment on a PC was developed. The research further defined the multipath distortion rate, MDr, as an index for the sound quality evaluation of FM receivers, and the findings concerning the suitability of the evaluation of FM terminals for automobiles were reported at the 2015 SAE World Congress.
Technical Paper

Prediction of Piston Skirt Scuffing via 3D Piston Motion Simulation

2016-04-05
2016-01-1044
This paper describes the establishment of a new method for predicting piston skirt scuffing in the internal combustion engine of a passenger car. The authors previously constructed and reported a method that uses 3D piston motion simulation to predict piston slap noise and piston skirt friction. However, that simulation did not have a clear index for evaluation of scuffing that involves piston skirt erosion, and it impressed shortage of the predictive accuracy of a scuffing. Therefore, the authors derived a new evaluation index for piston skirt scuffing by actually operating an internal combustion engine using multiple types of pistons to reproduce the conditions under which scuffing occurs, and comparing with the results of calculating the same conditions by piston motion simulation.
Technical Paper

Predictive Technique for Forced Vibration in Hybrid Transmission

2016-04-05
2016-01-1058
The subject is technology for damping forced vibration in the multiplate wet clutches used in hybrid vehicle transmissions. As a predictive technique for forced vibration caused by the structure of the clutch, three-dimensional simulation was used in the present study to anticipate the modes of vibration that occur. Next, a one-dimensional simulation was created as a predictive technique for drivetrain torsional vibration from the engine to the driveshaft. The one-dimensional simulation created was used to extract the modes of operation that are severe with regard to forced vibration from target values for vibration anticipated from the vehicle body. The results obtained were used with three-dimensional simulation to change the clutch structure to provide greater latitude with regard to the target for forced vibration.
Technical Paper

Development of Motor Emulator Provided with HIL Simulator for Simulation of HEV Power Control Unit Current during Vehicle Operation

2016-04-05
2016-01-1218
Conventionally, it has not been possible to evaluate current and temperature in power control units (PCU) for hybrid electric vehicles (HEV) during vehicle operation without using an actual permanent magnet synchronous motor (PMSM). The research discussed in this paper developed a motor emulator to take the place of an actual motor, making it possible to conduct tests for the evaluation of current and temperature in PCU during vehicle operation without the need to use a motor. The motor emulator is provided with a hardware-in-the-loop (HIL) simulator that calculates motor models at high speed using a field programmable gate array (FPGA). The developed system models the motor in detail via the HIL simulator, while a 3-phase current generator accurately reproduces the transient current in the PCU during vehicle operation.
Journal Article

Prediction of Fatigue Strength of Motorcycle Exhaust System Considering Vibrating and Thermal Stresses

2015-11-17
2015-32-0739
A method applicable in the design stage to predict fatigue strength of a motorcycle exhaust system was developed. In this prediction method, a vibrating stress, thermal stresses, stresses resulting from the assembling of the exhaust system components and a deterioration of fatigue strength of materials originated from high temperature were simultaneously taken into account. For the prediction of the vibrating stress, flexible multibody dynamics was applied to get modeling accuracy for vibration characteristics of the entire motorcycle and the exciting force delivered from engine vibrations. The thermal conduction analysis and the thermal deformation analysis based on finite element method (FEM) were applied for the prediction of thermal stresses in the exhaust system components. The temperature distribution on the surfaces of the exhaust system components is required for calculations of the thermal stresses.
Journal Article

Development of Feedback-Based Active Road Noise Control Technology for Noise in Multiple Narrow-Frequency Bands and Integration with Booming Noise Active Noise Control System

2015-04-14
2015-01-0660
When a vehicle is in motion, noise is generated in the cabin that is composed of noise in multiple narrow-frequency bands and caused by input from the road surface. This type of noise is termed low-frequency-band road noise, and its reduction is sought in order to increase occupant comfort. The research discussed in this paper used feedback control technology as the basis for the development of an active noise control technology able to simultaneously reduce noise in multiple narrow-frequency bands. Methods of connecting multiple single-frequency adaptive notch filters, a type of adaptive filter, were investigated. Based on the results, a method of connecting multiple filters that would mitigate mutual interference caused by different controller transmission characteristics was proposed.
Journal Article

Establishment of Performance Design Process for Vehicle Sound-Roof Packages Based on SEA Method

2015-04-14
2015-01-0664
The process for setting the marketability targets and achievement methods for automotive interior quietness (as related to air borne noise above 400Hz, considered the high frequency range) was established. With conventional methods it is difficult to disseminate the relationship between the performance of individual parts and the overall vehicle performance. Without new methods, it is difficult to propose detailed specifications for the optimal sound proof packages. In order to make it possible to resolve the individual components performance targets, the interior cavity was divided into a number of sections and the acoustic performance of each section is evaluated separately. This is accomplished by evaluating the acoustical energy level of each separate interior panel with the unit power of the exterior speaker excitation. The applicability of the method was verified by evaluating result against predicted value, using the new method, during actual vehicle operation.
Journal Article

Research on Mechanism of Change in Suspension Transfer Force in Relation to Low-Frequency Road Noise

2015-04-14
2015-01-0667
Cabin quietness is one of the important factors for product marketability. In particular, the importance of reducing road noise is increasing in recent years. Methods that reduce acoustic sensitivity as well as those that reduce the force transferred from the suspension to the body (the suspension transfer force) are used as means of reducing road noise. Reduction of the compliance of the body suspension mounting points has been widely used as a method of reducing acoustic sensitivity. However, there were cases where even though this method reduced acoustic sensitivity, road noise did not decrease. This mechanism remained unclear. This study focused on the suspension transfer force and analyzed this mechanism of change using the transfer function synthesis method. The results showed that the balance between the body's suspension mounting points, suspension bush, and suspension arm-tip compliance is an important factor influencing the change in suspension transfer force.
Journal Article

Development of Tool for Evaluation of Automotive Conformity of FM Receivers Using Two-Stage Method

2015-04-14
2015-01-0225
The suitability of FM radio receivers for automotive applications has conventionally been evaluated by evaluating the reception characteristics of broadcast waves while conducting repeated driving tests in a special test environment. Because the evaluation of sound quality while driving relies upon the auditory judgment of a limited range of test subjects, these tests present issues in terms of the reproducibility and objectivity of the evaluations. In order to resolve these issues, a method of evaluating the suitability of FM receivers for automotive applications through the creation of a virtual radio wave environment on a PC was developed (this has been termed the “Two-Stage method”). In the research described in this paper, the Two-Stage method was used to analyze the effect of multipath distortion on FM receivers when driving through arbitrary radio wave propagation environments.
Journal Article

Technique for Predicting Powertrain Self-Excited Vibration at Vehicle Start-Up

2015-04-14
2015-01-1674
A clutch FEM model was created to quantitatively understand the operation and dynamic friction characteristics of the facing materials. And a simulation model for dynamic behavior analysis of the torque transmission characteristics from a transmission that incorporates drivetrain damping characteristics to the vehicle body was constructed. The data of the actual vehicle was also measured when vibration occurs and loss torque is generated by friction in the drivetrain, and damping characteristics were determined from the measurement values. In order to confirm the usefulness of this method, the construction of a clutch that suppresses self-excited vibration was examined by simulation and the reduction of vibration in an actual vehicle was confirmed.
X