Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

The On-Board PM Mass Calibration for the Real-Time PM Mass Measurement

2010-04-12
2010-01-1283
On-board Particulate Matter (PM) mass calibration (OB-PMMC) is an approach to calibrate a real-time PM sensor with the gravimetric PM mass being collected on a conventional filter. The real-time PM sensor is integrated in a PM sample system and takes sample upstream of the sample filter. The PM mass collected on the filter is determined either by weighing the filter or by using analytical approaches. A unique calibration coefficient for each sample filter is generated for converting the PM real-time signal to the real-time PM mass emission. This calibration approach can be used to modify Constant Volume Samplers (CVS) and laboratory Partial Flow Sample Systems (PFSS), etc., into real-time PM mass measurement instruments for engine or vehicle exhaust PM measurement. The same technique may also be used to measure real-time PM concentration in the atmosphere under some circumstance.
Technical Paper

PM Emissions from Light-Duty Diesel Vehicles Retrofitted with Diesel Particulate Filters

2010-04-12
2010-01-0788
Two Euro 4 light-duty diesel vehicles were retrofitted with Diesel Particulate Filters (DPF). One was retrofitted with a low efficiency flow-through DPF. And, the other was retrofitted with a high efficiency wall-flow DPF. PM emissions from both vehicles were evaluated under the new European drive cycle (NEDC) on a chassis dynamometer. Several instruments were used to measure particulate matter (PM) emissions simultaneously from different aspects for two retrofitted vehicles. The PM mass emission from the vehicle retrofitted with the low efficiency DPF is close to 5.0 mg/km Euro 5 mass emission standard. However, the solid particle number emission is about 30 times higher than the Euro 5 solid particle number emission standard. Mass and number emissions from the vehicle retrofitted with the high efficiency DPF are well below Euro 5 emission standards.
Technical Paper

The Development of an On-Board Instrument for On-Road Diesel Particulate Measurement

2008-10-07
2008-36-0273
The on-board transient response diesel particulate measurement (OBS-TRPM) instrument measures on-road vehicle particulate emissions. It is a continuation of the Horiba on-board PM sampler (OBS-PM) [5]. The OBS-TRPM measures total diesel particulate emission by collecting diesel particulate matter (PM) on a pre-weighed 47 mm filter while the partial flow sample system (OBS-PM) runs under a proportional control strategy. A real-time diffusion charge sensor (DCS) takes sample upstream of the filter, and measures diesel PM in term of particle length (mm/cm3). By integrating the DCS real-time signal during the filter sampling, the cumulative fraction of diesel PM emission is obtained. Finally, diesel PM mass emission during a specific region, for example a Not-to-Exceed (NTE) zone, is calculated from the fraction of the real-time PM signal. Thus, the OBS-TRPM provides a solution to measure PM emission in NTE zones which are defined by the US EPA.
Journal Article

Penetration Calibration and Verification for the Solid Particle Counting System with Polydisperse and Monodisperse Particles

2008-04-14
2008-01-1178
Monodisperse and polydisperse Sodium Chloride (NaCl) particles were used to calibrate the solid particle penetration for the Volatile Particle Remover (VPR) in a Horiba prototype Solid Particle Counting System (SPCS). Prior to the calibration, dilution ratios on the SPCS are verified carefully with a flame ionization analyzer (FIA). Size distributions for polydisperse aerosols upstream and downstream of the Volatile Particle Remover (VPR) were measured with a Scanning Mobility Particle Sizer (SMPS). It is found that overall penetrations for polydisperse aerosols are larger than 95%. Geometric standard deviations from the raw and the diluted by the VPR are within ±1.5% difference. Thus, shapes of size distributions aren't changed after dilution. Geometric mean diameters shift a little, on average ±5% after dilution. Therefore, the VPR doesn't change the aerosol characteristics after the aerosol is diluted and heated up to 320 °C.
Technical Paper

Diesel Exhaust Particulate Sampler for On-board PM Measurement

2008-04-14
2008-01-1180
Horiba on-board diesel exhaust particulate sampler (OBS-PM) is a filter based partial flow particulate sampling system used for On-board diesel particulate matter (PM) measurement. It takes sample from either raw or diluted exhaust. It can run at constant dilution ratios or at variable dilution ratios with proportional control on the sample flow. The diluted exhaust moves through a pre-weighed 47 mm particulate filter and PM is collected on the filter. By weighing the loaded sample filter, PM emission from the engine or the vehicle can be determined. The performance of the OBS-PM meets most of requirements for a real-time partial flow sample system (PFSS) recommended by ISO 16183 [2]. The physical size and the power consumption of the instrument are minimized. It is powered with four 12 volts batteries, and can be installed on a vehicle for real-world PM emission evaluation.
Technical Paper

Comprehensive Characterization of Particulate Emissions from Advanced Diesel Combustion

2007-07-23
2007-01-1945
The applicability of several popular diesel particulate matter (PM) measurement techniques to low temperature combustion is examined. The instruments' performance in measuring low levels of PM from advanced diesel combustion is evaluated. Preliminary emissions optimization of a high-speed light-duty diesel engine was performed for two conventional and two advanced low temperature combustion engine cases. A low PM (<0.2 g/kg_fuel) and NOx (<0.07 g/kg_fuel) advanced low temperature combustion (LTC) condition with high levels of exhaust gas recirculation (EGR) and early injection timing was chosen as a baseline. The three other cases were selected by varying engine load, injection timing, injection pressure, and EGR mass fraction. All engine conditions were run with ultra-low sulfur diesel fuel. An extensive characterization of PM from these engine operating conditions is presented.
Technical Paper

Real-Time Measuring System for Engine Exhaust Solid Particle Number Emission - Performance and Vehicle Tests

2006-04-03
2006-01-0865
The prototype solid particle counting system (SPCS) has been used to study solid particle emission from gasoline and diesel vehicles. As recommended by the PMP draft proposal, exhaust is diluted by a Constant Volume Sampler (CVS). The SPCS takes the sample from the CVS tunnel. Transient test cycles such as EPA FTP 75, EPA HWFET (EPA Highway Fuel Economy Cycle), and NEDC (New European Driving Cycle) were tested. The repeatability of the instrument was evaluated on the diesel vehicle for three continuous days. The instrument exhibits good repeatability. The differences for the EPA ftp 75, the EPA HWFET, and the NEDC in three continuous tests are ± 3.5%. The instrument is very sensitive as well and detects the driving differences. A large number of solid particles are found during the hard acceleration from both the gasoline and the diesel vehicles. Solid particle emissions decrease quickly at deceleration and when vehicles approach constant speed.
Technical Paper

Real-Time Measuring System for Engine Exhaust Solid Particle Number Emission - Design and Performance

2006-04-03
2006-01-0864
A prototype solid particle counting system (SPCS) has been developed in Horiba. It measures the engine exhaust solid particle number emissions in real-time. The instrument is designed to follow the recommendation in the PMP proposal for solid particle number emissions measurement on Light-duty diesel vehicles. Two wide range continuous diluters, which were developed during this project, have been used as cold and hot diluters, respectively. The accuracy of the dilution ratio is normally ± 4% for the designed range. The instrument has low particle losses, and exhibits over 95% penetration for solid particles. The new instrument has functions such as, normal measurement, dilution ratio control, daily calibration for condensation particle counter (CPC), etc. These functions have been automated to make the instrument's operation simple.
Technical Paper

Comparison of an Alternative Particulate Mass Measurement with Advanced Microbalance Analysis

2004-03-08
2004-01-0589
The regulated level of particulate mass for 2007 heavy duty diesel on-road engines is 0.01 g/bkhp-hr. Measurement of this low level of particulate by weighing is costly and time consuming. The weighing method must measure 100 μg or less of particulate on a filter that weighs about 100 mg with a resolution of ± 2.5 μg or better. This means that the microbalance and sampling handling procedure must be accurate within ±25 ppm by mass or ±1/40,000. It requires a microbalance with 0.1 μg precision housed in a special environment. Moreover, the weighing method involves a lengthy process. The filter must be equilibrated, and then pre- and post-weighed, usually with repeat measurements. An alternative to gravimetric analysis is a thermal mass analyzer that measures the semi-volatile organic fraction (SOF), as well as soot and sulfate fractions of the particulate matter (PM) collected on a cleaned quartz filter. The calibration of the thermal mass measurement is discussed in detail.
X