Refine Your Search

Topic

Author

Search Results

Technical Paper

Synergies of Cooled External EGR, Water Injection, Miller Valve Events and Cylinder Deactivation for the Improvement of Fuel Economy on a Turbocharged-GDI Engine; Part 2, Engine Testing

2019-04-02
2019-01-0242
As CO2 legislation tightens, the next generation of turbocharged gasoline engines must meet stricter emissions targets combined with increased fuel efficiency standards. Recent studies have shown that the following technologies offer significant improvements to the efficiency of turbocharged GDI engines: Miller Cycle via late intake valve closing (LIVC), low pressure loop cooled EGR (LPL EGR), port water injection (PWI), and cylinder deactivation (CDA). While these efficiency-improving technologies are individually well-understood, in this study we directly compare these technologies to each other on the same engine at a range of operating conditions and over a range of compression ratios (CR). The technologies tested are applied to a boosted and direct injected (DI) gasoline engine and evaluated both individually and combined.
Technical Paper

Synergies of Cooled External EGR, Water Injection, Miller Valve Events and Cylinder Deactivation for the Improvement of Fuel Economy on a Turbocharged-GDI Engine; Part 1, Engine Simulation

2019-04-02
2019-01-0245
As CO2 legislation tightens, the next generation of turbocharged gasoline engines must meet stricter emissions targets combined with increased fuel efficiency standards. Promising technologies under consideration are: Miller Cycle via late intake valve closing (LIVC), low pressure loop cooled exhaust gas recirculation (LPL EGR), port water injection (PWI), and cylinder deactivation (CDA). While these efficiency improving options are well-understood individually, in this study we directly compare them to each other on the same engine at a range of operating conditions and over a range of compression ratios (CR). For this purpose we undertake a comprehensive simulation of the above technology options using a GT-Power model of the engine with a kinetics based knock combustion sub-model to optimize the fuel efficiency, taking into account the total in-cylinder dilution effects, due to internal and external EGR, on the combustion.
Technical Paper

Development of 4-Cylinder 2.0L Gasoline Engine Cooling System Using 3-D CAE

2019-04-02
2019-01-0156
To satisfy the global fuel economy restrictions getting stricter, various advanced cooling concepts, like active flow control strategy, cross-flow and fast warm-up, have been applied to the engine. Recently developed Hyundai’s next generation 4-cylinder 2.0L gasoline engine, also adopts several new cooling subsystems. This paper reviews how 3-D CAE analysis has been extensively used to evaluate cooling performance effectively from concept phase to pre-production phase. In the concept stage, the coolant flow in the water jacket of cylinder head and block was investigated to find out the best one among the proposed concepts and the further improvement of flow was also done by optimizing cylinder head gasket holes. Next, 3-D temperature simulation was conducted to satisfy the development criteria in the prototype stage before making initial test engines.
Technical Paper

A Study of Fuel Economy Improvement on US Fuel Economy Test Cycle by Model Based Cooled HP EGR System and Robust Logic through S-FMEA

2015-04-14
2015-01-1637
This paper focuses on the vehicle test result of the US fuel economy test cycles such as FTP75, HWY and US06 with model based Cooled EGR system. Cooled EGR SW function was realized by Model Based Development (internal rapid prototyping) using iRPT tool. With EGR, mixing exhaust gas with clean air reduces the oxygen concentration in the cylinder charge, as a result, the combustion process is slowed, and the combustion temperature drops. This experiment confirmed that the spark timing was more advanced without knocking and manifold pressure was increased in all cases with EGR. A positive potential of fuel economy improvement on FTP mode, US06 mode have seen in this experiment but not for HWY where the engine load is quite low and the spark advance is already optimized. As a result, fuel economy was increased by maximum 3.3% on FTP, 2.7% on US06, decreased by 0.3% on HWY mode respectively with EGR.
Technical Paper

Design for NVH Performance and Weight Reduction in Plastic Timing Chain Cover Application

2014-04-01
2014-01-1043
Light weighting is a critical objective in the automotive industry to improve fuel efficiency. But when redesigning parts for light weight, by changing from metal to plastic, the resulting design gives NVH issues due to differences in part mass and material stiffness. Many parts were not converted from metal to plastic because of NVH issues that could not be solved. Many engine parts such as cylinder head cover, air intake manifold, oil pan and etc. previously made of metal have since long been replaced with plastic. But timing chain cover has not been replaced because of the aforementioned issue. Sealing performance due to the dynamic characteristics of the application is another challenging factor. In this paper, the key aspects of the plastic timing chain cover as well as its advantage are presented.
Technical Paper

Development of Nu 2.0L CVVL Engine

2014-04-01
2014-01-1635
Hyundai Motor Group launched a Continuously Variable Valve Lift (CVVL) engine in 2012. The engine is equipped with HMG's unique CVVL mechanism and is characterized by low fuel consumption, high performance and its responsiveness. The CVVL mechanism is based on a six-linkage mechanism and has advantages of compactness and durability. The engine is a 4 cylinder In-Line, 2.0L gasoline engine and is designed for a mid-sized passenger car. The engine increases fuel efficiency by 7.7% and the peak engine power by 4.2%. One of the most challenging issues in producing a CVVL engine is the valve lift deviations throughout the engine cylinders. The valve cap shim and set screw were designed to adjust the valve lift deviations. Cap shim thickness is chosen by measuring the valve top height, and shoe lift of the cam carrier assembly. The set screw is an auxiliary device to adjust the valve lift deviation.
Technical Paper

Development of Valvetrain System to Improve Knock Characteristics for Gasoline Engine Fuel Economy

2014-04-01
2014-01-1639
It is difficult to reach higher compression ratios of the gasoline engine even though higher compression ratios improve thermal efficiency. One of the barriers is large torque drop led by knocking. Extensive researches to suppress knocking of the gasoline engine have been conducted. It is focused on lowering the temperature of fuel mixture in combustion chamber at compression top dead center (TDC). This paper covers the new valvetrain system to decrease the temperature of exhaust valve bottom (combustion) side. Hollow head and stem sodium filled valve (HHSV) have shown more heat transfer from combustion chamber to valve seat insert and valve guide, and higher thermal conductivity valve seat insert (HVSI) and valve guide (HVG) help to decrease valve temperature lower by higher heat transfer.
Technical Paper

A Study of Combustion Control Parameter Optimization in a Diesel Engine Using Cylinder Pressure

2014-04-01
2014-01-1352
In diesel engine development, fuel consumption, emissions and combustion noise have been main development objectives for fuel economy, low emissions and NVH. These main objectives can be achieved with advanced engine technologies. As electronic actuating systems are widely applied on diesel engines, elaborate control is required. This is because the main development targets are greatly affected by engine control parameters but frequently have a trade-off relationship. Therefore, the optimization of combustion control parameters is one of the most challenging tasks for improvement. As an efficient method, the DOE methodology has been used in engine calibration. In order to develop a mathematical model, the input and output values must be measured. Unlike other variables, combustion noise has been continually reported to have better indication method in simplified way. In this paper, advanced noise index from cylinder pressure signal is applied on engine test.
Technical Paper

Active Type Variable Intake System

2011-10-06
2011-28-0088
In this paper, an active type variable intake system is proposed, which improves both engine power and NVH performance. The proposed system uses a magnet valve to control the air path to the engine intake manifold. While other types of variable intake system such as vacuum actuator type or DC motor type need an ECU to control the valve, the proposed system only uses force equilibrium between magnetic force and vacuum pressure, resulting in weight and cost reduction. The system is composed of dual duct (duct A, duct B) and a magnet valve. In low RPM region, the magnet valve is closed and only duct A is used to supply air into the engine. In high RPM region the valve opens up and maximizes the amount of the air that goes into the engine intake manifold. The result is that the output power of the engine is maximized in high RPM region, as well as the NVH performance is improved in low RPM region.
Technical Paper

Individual Cylinder Air-Fuel Ratio Estimation Algorithm for Variable Valve Lift (VVL) Engines

2010-04-12
2010-01-0785
In a multi-cylinder variable valve lift (VVL) engine, in spite of its high efficiency and low emission performance, operation of the variable valve lift brings about not only variation of the air-fuel ratio at the exhaust manifold, but also individual cylinder air-fuel ratio maldistribution. In this study, in order to reduce the air-fuel ratio variation and maldistribution, we propose an individual cylinder air-fuel ratio estimation algorithm for individual cylinder air-fuel ratio control. For the purpose of the individual cylinder air-fuel ratio estimation, air charging dynamics are modeled according to valve lift conditions. In addition, based on the air charging model, individual cylinder air-fuel ratios are estimated by multi-rate sampling from single universal exhaust gas oxygen (UEGO) sensor located on the exhaust manifold. Estimation results are validated with a one-dimensional engine simulation tool.
Technical Paper

A study on Reducing the Computing Burden of Misfire Detection using a Conditional Monitoring Method

2004-03-08
2004-01-0722
This paper presents a conditional misfire monitoring method to reduce the computing burden of the motoring. In this conditional monitoring method, the ECU performs misfire detection only when there is high probability of misfire events. The condition for performing the misfire detection is determined by the pre-index which is defined as the deviation of the segment durations of the crankshaft in this paper. The quantity of the code of calculating the pre-index is 7 times less than that of a conventional monitoring method so that the computing burden can be reduced with the conditional monitoring method. The experimental results shown that the pre-index and the conditional monitoring method are valid.
Technical Paper

Thermal Load in a Heavy Duty Diesel Engine with EUI System

2002-03-04
2002-01-0492
High pressure fuel injection systems, such as common rail (CR) systems and electronically-controlled unit injector (EUI) systems, have been widely applied to modern heavy duty diesel engines. They are shown to be very effective for achieving high power density with high fuel efficiency and low exhaust gas emissions. However, the increased peak combustion pressure gives additional structural stress and thermal load to engine structure. Thus, proper material selection and thermal analysis of engine components are essential in order to meet the durability requirements of heavy-duty diesel engines adopting a high pressure injection system. In this paper, thermal analysis of a 12.9 ℓ diesel engine with an EUI system was studied. Temperatures were measured on a cylinder head, a piston and a cylinder liner. A specially designed linkage system was used to measure the piston temperatures. A radio-tracer technique was also used to verify the rotation of piston rings.
Technical Paper

In search of SULEV-compliant THC emission reduction technologies

2000-06-12
2000-05-0298
This paper describes the development of THC reduction technologies compliant with SULEV regulations. Technologies embodied by the developmental work include improvement of fuel spay atomization, quick warm-up through coolant control shut off, and acceleration of fuel atomization for the fast rise of cylinder head temp inside the water jacket as well as the improvement of combustion state. The technologies likewise entail reduced HC while operating in lean A/F condition during engine warm-up with the cold lean-burn technology, individual cylinder A/F control for improvement of catalytic converting efficiency, aftertreatment such as thin-wall catalyst, HC absorber and EHC and etc., through vehicle application evaluation in cold start. We carried out an experimental as well as a practical study against SULEV regulations, and the feasibility of adopting these items in vehicle was likewise investigated.
Technical Paper

Closed-Loop Control of Spark Advance and Air-Fuel Ratio in SI Engines Using Cylinder Pressure

2000-03-06
2000-01-0933
The introduction of inexpensive cylinder pressure sensors provides new opportunities for precise engine control. This paper presents a control strategy of spark advance and air-fuel ratio based upon cylinder pressure for spark ignition engines. In order to extend the cylinder pressure based engine control to a wide range of engine speeds, the appropriate choice of control parameters is important as well as essential. For this control scheme, peak pressure and its location for each cylinder during every engine cycle are the major parameters for controlling the air-fuel ratio and spark timing. However, the conventional method requires the measurement of cylinder pressure at every crank angle degree to determine the peak pressure and its location. In this study, the peak pressure and its location were estimated, using a multi-layer feedforward neural network, which needs only five cylinder pressure samples at -40°, -20°, 0°, 20°, and 40° after TDC.
Technical Paper

Dynamic Characteristics of Oil Consumption - Relationship Between the Instantaneous Oil Consumption and the Location of Piston Ring Gap

1998-10-19
982442
In order to understand the relationship between the location of piston ring gap and instantaneous change of oil consumption during engine operation, the ring rotation and instantaneous oil consumption were measured simultaneously in a hydrogen fueled single cylinder spark ignition engine. A radioactive-tracer technique was used to measure the rotational movement of piston ring. Two kinds of isotopes(60Co and 192Ir) with different energy level were mounted to the top and 2nd rings to measure each ring's movement independently. The instantaneous oil consumption was obtained by analyzing CO2 concentration in exhaust gas. From the result of ring rotational movement, typical patterns of ring rotation were obtained as follows; Rotational movements are usually initiated by changing the operating conditions. Piston rings tend to rotate easily under low load condition. The rotation speed of ring usually ranged in 0.2∼0.4 rev/min for top ring and 0.5∼0.6 rev/min for 2nd ring.
Technical Paper

The Characteristics of Carbon Deposit Formation in Piston Top Ring Groove of Gasoline and Diesel Engine

1998-02-23
980526
In order to investigate the characteristics of top ring groove deposit formation in gasoline and diesel engine, engine test and simulation test were performed. From component analysis of used oils sampled from actual running engines, oxidation and nitration for gasoline engine and soot content for diesel engine were selected as main parameters for evaluating oil degradation. In gasoline engine, deposit formation increases linearly with oxidation and nitration, and especially, oil oxidation is a dominant factor on the deposit formation rather than nitration. And, deposit formation increases gradually in low temperature ranges below 260°C even if oils are highly oxidized, but it increases rapidly if piston top ring groove temperature is above 260°C. In diesel engine, deposit formation is highly related to soot content in lubricating oils.
Technical Paper

Recycling of Automotive Tail Lamp Assembly

1997-02-24
970417
A new recycled material has been developed by using the scrap of tail lamp assembly, made of poly(methyl methacrylate) (PMMA) for the lens and acrylonitrile-butadiene-styrene terpolymer (ABS) for the housing. Lamp scrap was extruded in a twin-screw extruder, and mechanical properties of the scrap were compared with ABS, PMMA, and an ABS/PMMA (60/40) blend. The recycled material from 100% tail lamp scrap has similar modulus to the 60/40 blend, however, notched Izod impact strength and thermal resistance were lower than that of the blend, probably due to the presence of hot melt adhesive and silver paint. Scrap/virgin polymer mixtures showed improved thermal resistance and impact strength. The effects of composition and type of mixed polymer on mechanical properties were also investigated.
Technical Paper

Application of High Performance Powder Metal Connecting Rod in the V6 Engine

1997-02-24
970427
Today, light connecting rods are vital to satisfying the demands of modern internal combustion engines. HYUNDAI Motor Company (HMC) has applied powder metal forged connecting rods instead of conventional hot forged connecting rods to obtain low product costs and to improve NVH characteristics and bearing reliability. Light connecting rods were developed through optimized design with high quality and low cost. Notably, the mass of a powder metal forged connecting rod is 17.7% lighter than that of a conventional hot forged type connecting rod, and its crank end is 22.5 % lighter than that of a conventional type connecting rod. Light connecting rods result in reduced crankshaft mass, so the mass of the main moving parts can be reduced. With this mass reduction, bearing reliability and NVH characteristics can be enhanced.
Technical Paper

Flow Modeling for the Branched Intake Manifold Engine

1996-02-01
960079
A flow model is a convenient tool for developing the engine intake system. Two flow models for the branched engine intake were developed by the finite difference method and the method of characteristics. The results from the models were compared with the experimental data and the appropriate boundary conditions were established for each model. Modeling the flow at the intake and exhaust valves with a cylinder and at the pipe branches were the most critical part of the flow models affecting the accuracy of the solutions. From two models, it was found that the finite difference model was simpler than the characteristic model in formulation with the better accuracy. The effects of valve timings and intake geometry were studied by the flow models to design the optimum intake system.
Technical Paper

Optimization of the Packing Design for Manifold Catalytic Converter Application

1996-02-01
960561
A preconverter is an essential component of the new vehicle exhaust system for the achievement of tightened emission standards. To meet those standards, the Manifold Catalytic Converter (MCC) system has been developed in the Hyundai Motor Company (HMC). Unfortunately, the conventional MCC is no longer a suitable design for the exhaust gas treatment of the newly developed high performance engine since it cannot withstand the engine's exhaust temperature, vibration, pressure pulsation, and many other severe conditions. This paper is focused on a failure-mode analysis and new packing designs for the MCC application through a series of durability tests.
X